Journal of RNA and Genomics

Reach Us +44 1400530055

- Journal of RNA and Genomics (2010) Volume 9, Issue 1

Cell-specific RNA interference by peptide-inhibited-peptidaseactivated siRNAs

The use of chemically-synthesized short interfering RNAs (siRNAs) is the key method of choice to manipulate gene expression in mammalian cell cultures and in vivo. Several previous studies have aimed at inducing cell-specific RNA interference (RNAi) in order to use siRNA molecules as therapeutic reagents. Here, we used peptide-inhibited siRNAs that were activated after cleavage by cell-specific peptidases. We show that siRNAs with bound peptide at the antisense strand could be activated in target cells and were able to induce RNAi in a cell-specific manner. Green Fluorescent Protein (GFP) and Signal Transducer and Activator of Transcription (STAT)-3 gene expression were selectively reduced in a JEG-3 human choriocarcinoma cell line expressing the activating enzyme caspase-4, whereas the effect was absent in HEK cells which lacked the enzyme. In JEG-3 cells, reduction of STAT3 gene expression by conventional and peptide-inhibited siRNA led to a decrease in cell proliferation. This suggests that peptide-inhibited siRNAs provide improved cell specificity and offers new opportunities for their therapeutic use.

Author(s): Sandra Koehn, Hendrik W Schaefer, Mirko Ludwig, Natja Haag, Ulrich S Schubert, Lydia Seyfarth, Diana Imhof, Udo R Markert, Tobias G Poehlmann*

Abstract Full Text PDF

Get the App