Journal of Molecular Oncology Research

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
Reach Us +1 (202) 780-3397

Rapid Communication - Journal of Molecular Oncology Research (2022) Volume 6, Issue 2

An efficient method for discovering gene-environment and gene-gene interactions causing genetic diseases

Hereditary infections are one of the foremost basic illnesses confronting human societies, their chance lies within the transmission of hereditary characteristics from one era to another, where the awkwardness of these characteristics leads to an undesirable descendant, which contrarily influences the exertion of this descendant and its administrations to society. Hereditary malady is caused by a transformation within the Deoxyribonucleic Corrosive (DNA), these hereditary changes are produced by nonlinear intuitive between two or more qualities and / or natural exposures. The point of this paper is to find both of gene-environment intelligent and gene-gene intelligent causing a hereditary illness, the proposed strategy is based on both of the channel and wrapper include choice strategies, it employments the channel strategy employing a Alleviation calculation to distinguish the gene-environment intuitive, wrapper strategy utilizing hereditary calculation to find gene-gene intelligent, and classification choice tree calculation to create the conditional rules of gene-gene intelligent. It has been assessed utilizing numerous distinctive classifier models on four benchmark databases, and compared its execution with an Apriority calculation for producing rules of gene-gene intuitive, the proposed technique accomplished the most noteworthy execution and way better classification exactness on all databases containing patients influenced by gene-environment intuitive or gene-gene intuitive or both of gene- environment and gene-gene intelligent.

Author(s): Mohamed Rashid

Abstract Full Text PDF

Get the App