Biomedical Research

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Research Article - Biomedical Research (2018) Volume 29, Issue 0

Investigation of a wavelet-based neural network learning algorithm applied to P300 based brain-computer interface

The paper presented herein proposes an algorithm that aims at improving the classification accuracy of Brain-Computer Interface (BCI) speller. In this work, feed-forward neural network with back propagation learning is used for classification purposes. Testing of the proposed algorithm was performed through the utilization of two datasets, namely; Berlin BCI Competition III and EPFL BCI groups. Results, for the first dataset, indicated that the use of 64 electrodes with 30 hidden layers grants an accuracy of 94.9 %, while an average accuracy of 95.8% (range: 92%-100%) was obtained for the second dataset when using a 32 electrode configuration with 20 hidden layers. The obtained accuracy levels, in this study, are higher when compared with other recent classification approaches.

Author(s): Enas Abdulhay, Rami Oweis, Areej Mohammad, Lujain Ahmad

Abstract Full Text PDF