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Abstract

The paper presented herein proposes an algorithm that aims at improving the classification accuracy of
Brain-Computer Interface (BCI) speller. In this work, feed-forward neural network with back
propagation learning is used for classification purposes. Testing of the proposed algorithm was
performed through the utilization of two datasets, namely; Berlin BCI Competition III and EPFL BCI
groups. Results, for the first dataset, indicated that the use of 64 electrodes with 30 hidden layers grants
an accuracy of 94.9 %, while an average accuracy of 95.8% (range: 92%-100%) was obtained for the
second dataset when using a 32 electrode configuration with 20 hidden layers. The obtained accuracy
levels, in this study, are higher when compared with other recent classification approaches.
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Introduction
People with motor disabilities and neuromuscular disorders
such as spinal cord injuries, Amyotrophic Lateral Sclerosis
(ALS), and those with "locked in" syndrome are limited in
their ability of interaction with the surrounding world. Their
motor neurons degenerate; they can no longer send impulses to
the muscle fibers that normally result in muscle movement.
This in turn results in muscles atrophy; limbs begin to look
"thinner" and those most severely affected may lose all the
voluntary movements [1]. Therefore, recent advancement in
Brain Computer Interface (BCI) encouraged researchers to
develop new non-muscular communication channels that allow
people with motor disabilities to interact with the environment
by effectively controlling communication facilities such as
computers and speech synthesizers which would consequently
improve their quality of life [2].

Target signals issued from the patient should be translated into
commands [3]. The signals can be acquired by collecting brain
signals (EEG) [4]. The obtained brain waveforms contain the
information needed from the user intentions. EEG measures
the brain electrical activity caused by the flow of electric
currents during synaptic excitations of the dendrites in the
neurons. The EEG signal is measured as the potential
difference over time between active and reference electrodes.
An extra third electrode, known as the ground electrode, is
used to measure the differential voltage between the active and
the reference points. The electrodes placed over the scalp are
commonly based on the International 10-20 system; it is the
most common method for brain signals detection because of its

high temporal resolution, relative low cost, high portability and
few risks to the users [1].

Since brain activity voltage measured by a given electrode is a
relative measure, the measurement may be compared to
another reference brain voltage situated on another site. This
result in a combination of voltages: brain activity and noise.
Because of this, the reference site should be chosen in a site
where brain activity is almost zero. In general, there are three
referencing methods, Common reference method, Average
reference and Current source density (CSD) [5].

There are currently several major categories of BCIs in use that
are classified based on the type of neurophysiologic signal they
utilize. These categories include, but are not limited to, Visual
Evoked Potentials (VEPs), P300 elicitation, alpha and beta
rhythm activity, slow cortical potentials (SCPs), and
microelectrode cortical neuronal recordings [3]. P300 waves
are evoked potentials that are elicited in response to specific
stimuli, while SCPs occupy the lowest frequency range of the
EEG signal and are associated with cortical activation and
deactivation [3].

The BCI system aims specifically at detecting the P300 signal
and interpreting it in order to get the user intent. The P300 is a
positive deflection in the human EEG, appearing
approximately 300 ms after the presentation of rare or
surprising, task-relevant stimuli. In P300 based BCI, a matrix
of possible successively flashing choices is presented on a
screen; and scalp EEG is recorded over the centroparietal area.
Main advantage of P300 is the high number of choices.
However, only the choice desired by the user evokes a
corresponding large P300 potential (i.e. a high amplitude
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positive potential about 300 ms after the flash). BCI is a pattern
recognition system that classifies each pattern into a class
according to its extracted features. Feature selection is used to
identify discriminative information from the brain signals and
map them to feature vectors. Main feature selection and
extraction methods to obtain relevant characteristics of signals
are listed in [1].

Classification is the most important and challenging step, after
feature selection and extraction, which aims at recognizing the
user's intention based on the provided vectors as illustrated [1].
The design of the classification step involves one or a
combination of algorithms. The algorithms should necessarily
reduce the dimensionality and the bias-variance tradeoff [6-8].

The proposed work presents an algorithm that aims at
improving the accuracy of BCI speller. The approach is to
utilize the feed forward neural network classifier in
combination with feature extraction methods, for two datasets:
Berlin BCI Competition III [9] and EPFL BCI group [10]. The
ability to learn from examples is one of most important
properties of neural networks. Once trained, they are capable
of recognizing a set of training data-related patterns [11,12]. A
comparison with accuracy levels achieved by recent
classification approaches will be presented in the discussion
section.

Materials and Methods

Dataset 1
Dataset and paradigm: The proposed work has been applied
to the Dataset II from BCI Competition III Challenge 2004
provided by Wadsworth Center (Subject A) [9]. The subject
had to go through five sessions where each session consisted of
multiple of runs. The task asked from the subject in each run is
to focus his attention on different prescribed characters from a
paradigm. P300 evoked potentials appear in the EEG in
response to the intensification of a row or column containing
the desired character. Each row and column in the matrix was
randomly intensified for 100 ms resulting in 12 different
stimuli-6 rows and 6 columns. After intensification of a row/
column, the matrix was blank for 75 ms. Row/column
intensifications were block randomized in blocks of 12. The
sets of 12 intensifications were repeated 15 times for each
character and thus there were 180 total intensifications for each
character epoch.

For a given acquisition session, all EEG signals issued via a 64
channel scalp acquisition system have been continuously
collected. Before digitization at a sample rate of 240 Hz,
signals have been bandpass-filtered (0.1-60 Hz) and decimated
by a factor of 2. A more detailed description of the dataset can
be found in the BCI competition paper [9].

The paradigm used for recording the data was described by
Donchin et al., and originally by Farwell and Donchin, 1988
[13]. It consists of a 6 × 6 matrix of characters. All rows and
columns of this matrix were successively and randomly
intensified at a rate of 5.7 Hz.

Single trials extraction: As described in the data description,
the providers have merged all the data (runs) in one signal
(session). Therefore, trails extraction stage is required. This
can be achieved by extracting all data samples between 0 to
667 ms posterior to the beginning of each of the 180 post-
intensifications.

Filtering and decimation: Filtering is a crucial step in noise
reduction since certain types of noises and artifacts occur at
known frequencies. After signal extraction, each signal has
been filtered with an 8-order band-pass Chebyshev Type I filter
[14], of which cut-off frequencies are 0.1 and 20 Hz [15], and
has been decimated according to the high cut-off frequency.

Feature extraction (Discrete wavelet transform): Since the
ERP (Event Related Potential) is a transient signal, time-
frequency features are more appropriate. Time-frequency
features can be obtained by the wavelet transform, which is an
efficient tool for multi-resolution analysis of non-stationary
and transient signals. Furthermore, Wavelet transform is
potentially one of the most powerful signal processing
techniques because of its ability to adjust to signal components.

The algorithm decomposes the original signal into two parts
that are called appropriate coefficients and detail coefficients
respectively. The discrete DWT coefficients are obtained by
convolving x (n) with dilated/compressed and shifted versions
of a wavelet function Ψj, k (n) that presents a specific oscillation
model. The selection of a mother wavelet and a proper
decomposition level are very important in the DWT [16]. The
Daubechies family of wavelets have been chosen because they
are orthogonal and easy to implement [17]. The approximate
coefficients of the decomposition of level 5 are used as the
features.

Normalization: Normalization is performed to allow
comparison of different signals and to make the data more
informative to users. It is performed by dividing the signals by
a reference so that the factors affecting the signal and reference
value are the same, which helps obtaining valid measurements
compared to the reference value. Normalization was applied to
the system using data scaling from 0 to 1 by calculating the
maximum and minimum values of the data and hence the
dividing factor.

Channel selection: Since it is possible to reduce the number of
electrodes necessary for the classification of brain signals
without losing substantial classification performance, we have
tested the influence of number of electrodes used on the
classification accuracy. The authors in [18] demonstrate that
electrodes Fz, Cz, Pz, Oz, C3, C4, P3, P4, PO7 and PO8 have
much more influence in P300 detection, while in [19], the best
accuracy was achieved using data from electrodes Po7,
Pz,Cpz,P7, Fc1,Cz, Po8 and Fc5.

Classification (Neural network): Neural network with back
propagation learning algorithm was used for classification.
Neural network is one of the new methods utilized in recent
studies. NNs methods imitate the structure of biological neural
network [20].
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Using neural network pattern recognition toolbox in MATLAB
R2009a, the feature matrix was used as the input while the
target matrix as the desired output. The target matrix contained
the labels (1, 0); where 1 is for the target and 0 for non-target.
The Data was split into training, validation, and testing
according to the percentages 70%, 15%, and 15% respectively.
Training subset was used to train the model; validation subset
was used to evaluate the model; and then testing the model has
been achieved using the testing subset.

The input and target matrices are first fed into the tool box.
The number of hidden neurons is then set. 15, 20, 30 and 40
hidden layers configurations have been tested in order to
choose the optimized number. 1024 represents the total data
and 1 is the number of layers resulted. The training is then
initiated to classify the input according to the target matrix.

Dataset 2
Data description: The utilized EEG data is derived from
EPFL BCI group [10]. The data set was sampled at 2048 Hz
and acquired from 34 electrodes placed at the standard
positions of the 10-20 international system. The system was
tested on 8 subjects (4 disabled and 4 healthy).

Six images of a television, a telephone, a lamp, a door, a
window, and a radio were displayed in front of the users on a
laptop screen. Each subject completed four recording sessions.
Each of the sessions consisted of six runs, one run for each of
the six images. The images were flashed in random sequences,
one image at a time. Each flash of an image lasted for 100 ms
and during the following 300 ms none of the images was
flashed, i.e. the inter stimulus interval was 400 ms. The
duration of one run was approximately one minute and the
duration of one session including setup of electrodes and short
breaks between runs was approximately 30 min [3].

Single trial extraction: The data from each session was
provided as a matrix that contains all the runs. The dimension
of the matrix is hence (34 × the number of samples). Each of
the 34 rows corresponds to one electrode, and each column
corresponds to one temporal sample. Signal portions of 1000
ms were extracted from the data. Single trials started therefore
at stimulus onset, i.e. at the beginning of the intensification of
an image, and ended 1000 ms after stimulus onset. The fact
that P300 Evoked Related Potential (ERP) appears about 300
ms after the stimulus makes this window large enough to
capture the required time features for an efficient classification
[3].

Filtering: It is a very important step to reduce the effect of
artifacts and noise before starting any processing. A 6th order
forward -backward Butterworth band pass filter, can eliminate
some of the artifacts of known frequencies; the cut-off
frequencies were 1 and 12 Hz [3]. Butterworth filter
approximates the ideal filter well in the pass band, has an
essentially flat amplitude-frequency response up to the cut-off
frequency, achieves the sharpest attenuation, has a non-linear
phase-shift and a monotonic drop in gain with frequency in the

cut-off region with a maximally flat response below cut-off
frequency [20].

Windsorizing: The effect of eye movement and muscle
activity could cause large amplitude outliers in the EEG. To
reduce this effect, the data from each electrode is windsorized.
The 10th percentile of the samples from each electrode was
computed and considered as the lower limit, while the 90th

percentile was computed and considered as the higher limit [3].

Normalization: Normalization aims at allowing comparison of
different signals and makes the data more informative to users.
It is performed by dividing the signals by a reference so that
the factors affecting the signal and reference value are the
same. Normalization was applied on the system using
MATLAB. The data has been scaled from 0 to 1 by zero mean
and unity standard deviation [3].

Channel selection: The data provided was acquired based on
34 electrodes. In this work, four electrode configurations were
tested in order to reduce the number of electrodes. The
electrode configurations tested were 4, 8, 16, and 32
electrodes.

Feature vector construction: After pre-processing, the
samples from the selected electrodes were considered as
feature vectors with a dimension of (Nx × Ny) where Nx
denotes the number of electrodes and Ny denotes the number of
samples. The target vector has a size of (Ny × 1) and carries 1
or -1 [3].

Classification (Neural network classification): Neural
network with back propagation learning algorithm was used for
classification with the help of neural network pattern
recognition toolbox in MATLAB R2009a. The feature matrix
was used as input. The target matrix contained the labels (1, 0);
where 1 is for the target and 0 for non-target.

The data was split into training, validation, and testing
according to the percentages 70%, 15%, and 15% respectively.
Training subset was used to train the model; validation subset
was used to evaluate the model and then testing the model has
been accomplished with the testing subset. Sessions 1-3 were
used for training and session 4 for testing.

The input and target matrices were first fed into the Neural
Network. The number of hidden neurons is then set. 15, 20 and
30 hidden layer configurations have been tested to optimize the
related parameter. The training is then initiated to classify the
input according to the target matrix. The number of input data
is 1024, 1 is the number of output layers and 1 is the number of
output data.

Results and Discussion

Dataset 1
Since P300 appears about 300 ms after the stimulus the chosen
window is considered to be large enough to capture the
required time features for an efficient classification [21]. After
the extraction of the samples in the beginning of each
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intensification, signals from the 64 channels have been
bandpass filtered from 0.1 Hz to 20 Hz. The range is chosen as
the cognitive activity rarely occurs outside of the range 3-40
Hz. The Chebyshev filters have the property of error
minimization between the idealized and the actual filter
characteristic over the range of the filter. When compared to
some filters, a Chebyshev filter can achieve a sharper transition
between the pass band and the stop band with a lower order
filter. The sharp transition between the pass band and the stop
band of a Chebyshev filter produces smaller absolute errors
and faster execution speeds [14].

db4 (mother wavelet) has been used to extract the features of
EEG signals. The approximate coefficients of the
decomposition of level 5 are used as the features. Using level 3
showed no change of results [22].

Before classification, a normalization stage was necessary
since each character in the sequence was a separate data
segment containing 15 repetitions of the flashing of all 12
rows/columns, and some individual data segments had much
larger amplitudes. Each data segment was therefore,
normalized independently, and each channel was also treated
independently. Finally, the normalized features from all
channels were fed to a neural network model designed using
the MATLAB software.

The confusion matrices of the three configurations yielding the
highest accuracies are (64-electrodes, 30 hidden layers), (10-
electrodes, 15 hidden layers), and (8-electrodes, 40 hidden
layers). Compared to literature, the 64 electrode configuration
and 30 hidden layers, by achieving the accuracy of 94.9%
outperformed the recent works in [22,23] applied to the first
dataset. Table 1 illustrates the compared values.

The system validity was also evaluated based on sensitivity
and specificity where True Positive (TP) defines the number of
signals classified correctly for a specific character, False
Positive (FP) defines the number of signals classified wrongly
for the same character. True Negative (TN) defines the number
of signals classified correctly as a different character, and False
Negative (FN) defines the number of signals classified wrongly
as a different character.

Specificity (SPC) /true negative rate:

Spc=TN/N=TN/FP+TN=97.3% → (1)

Sensitivity or true positive rate (TPR):

TPR=TP/P=TP/TP+FN=83.1% → (2)

Dataset 2
After extracting the samples from the original data and
applying feature extraction and channel selection, the resultant
feature vectors were fed to neural network.

The use of a 32 electrode configuration with 20 hidden layers
outperformed the other configurations with an average
accuracy of 95.8% and a maximum of 100%. A strong increase
in classification accuracy has been observed between the
electrode configurations consisting of four and eight

electrodes. Using more than eight electrodes yielded relatively
less improvement in performance.

The obtained average sensitivity and specificity values were
89.0% and 97.8%, respectively and the maximum values were
100% and 100%, respectively. The proposed method hence
outperformed the methods SWDA [24], PB [3], Fuzzy logic
[25], SVM and LDA [3] applied to the second dataset. NN
approach gave the same accuracy and specificity ranges as
BLDA [10] with a slightly lower sensitivity. This might be due
to the high number of entry data to the neural network. Table 1
illustrates the compared values.

Table 1. Comparison of the suggested work accuracy with published
data.

Approach Accuracy

Dataset 1

[22] 85%

[23] 84%

Suggested work 94.90%

Dataset 2

[3] approach 1 92.50%

[3] approach 2 91.90%

[10] 99.50%

[24] 84%

[25] 84%

Suggested work 95.80%

Conclusion
Recent researches have focused on improving the quality of
life for people with motor disabilities such as building
communication channels system that allow them to interact
with the surrounding. This paper aimed at finding out how
applying artificial neural network classifier coupled to
appropriate feature extraction and selection methods improves
the accuracy of the BCI system. Results show a promising
approach outperforming many recently proposed methods.
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