Review Article - Journal of RNA and Genomics (2021) Volume 17, Issue 3
Overview of Delivery of CRISPR/Cas Systems, Its Types and Role in Genome Editing and Immunotherapy
A versatile programmable tool for effective and precise genome editing and gene targeting has been utilized and prepared with normal Clustered regularly interspaced short palindromic repeat-CRISPR-associated protein (CRISPR-Cas) genome editing, a prokaryotic adaptive immune system. This ground breaking approach can be used for the treatment, detection and treatment of cells, in vivo gene therapy or animal models. Safe and effective provision of CRISPR/Cas9 remains one of the biggest therapeutic problems in recent years. Though in-vivo and in-vitro genome editing have many advantages, their severe obstacles, such as small insertion sizes, high risk of carcinogenesis, and stimulation of the immune system are causing many problems for laboratory and clinical applications. The power of the latest cancer therapeutic approach has been shown by the genetically engineered immune cells using chimeric antigen receptors (CAR) or modified T cell receptors (TCR). While Autologous CD19 CAR T cells are effective in their clinical development, they have many advantages over their autologous counterparts, and recently, due to the advent of multiplex genome editing techniques, in particular CRISPR/Cas systems, have gathered wide-ranging attention.
Author(s): Awais Ali1*, Sadia Aslam2, Sonia Tabasum1, Rubab Aslam3