Journal of Cell Science and Mutation

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
Reach Us +32 25889658

Review Article - Journal of Cell Science and Mutation (2018) Volume 2, Issue 1

Lithium effects on stem cells - advances in stem cell application in clinical medicine

Lithium (Li) salts have been widely used in psychiatry as mood stabilizing agents for 66 years. Li is found in variable amounts in foods, especially grains, vegetables, and in various geographical areas. Additionally drinking water provides a significant source of the element. Dietary intake in humans depends on location, type of foods consumed, and fluid intake. Traces of Li have been detected in human organs and tissues, leading speculation that the element is responsible for specific functions in the human body. It was not until the 20th century that studies performed in the 1970's and 1990's, primarily in chickens, cows, goats, and rats, maintained on Li-deficient diets demonstrated higher mortality, and altered reproductive and behavioral abnormalities. Such deficiencies have not been detected in humans; however, studies performed on populations living in areas with lower Li levels in water supplies have been associated with higher rates of suicides, homicides, and the arrest rates for drug abuse and other crimes. Thus, Li appears to play a significant role in early fetal development evidenced by high Li levels during the early gestational period and perhaps social behavior. Biochemically, the mechanism of Li action involves multi-factor and interconnected pathways with enzymes, hormones, vitamins, transcription, and growth and transforming factors involved. This body of evidence now appears sufficient to label Li as an essential element with the recommended RDA for a 70 kg adult of 1 mg/day. Of extreme importance for the future is the increasing clinical data indicating Li can be used effectively for the treatment of acute brain injuries, e.g., ischemia and chronic neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Tauopathies, and Huntington's disease. This conclusion is based upon evidence showing Li as important in neurogenesis, neuronal repair, as well as protecting neurons from neurotoxicity

Author(s): Vincent S Gallicchio

Abstract Full Text PDF

Get the App