Biomedical Research

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
Reach Us +44-7360-538437

Research Article - Biomedical Research (2017) Volume 28, Issue 3

Immunomodulatory response of 4T1 murine breast cancer model to camellia royal jelly

Background: Royal Jelly (RJ) has been verified to possess abundant pharmacological properties. RJ produced from special nectar blooms shows various functions. In this work, the immunomodulatory response of camellia RJ on a 4T1 murine breast cancer model is discussed.

Methods: BALB/c female mice were divided into four groups. Group M was fed with water. Group RJ 0.5 and Group RJ 1.5 were treated with RJ (0.5, 1.5 g/kg body weight per day, respectively). Group CP was fed with water and injected intraperitoneally with cyclophosphamide (20 mg/kg body weight) every other day starting from the 8th day of tumour inoculation. The mice were kept for 42 days. The 4T1 tumour cell suspension was subcutaneously injected into the right mammary fat pads of each mouse, when the mice were administered orally on the 15th day.

Results: Camellia RJ had no obvious effect on the levels of body weight in the 4T1-bearing mice, but it slightly inhibited growth of 4T1 breast cancer cells in vivo. The result shows that RJ (0.5 g/kg) had a significant immunomodulatory effect on the 4T1-bearing mice, which was reflected in serum by the augmentation of Tumour Necrosis Factor-Alpha (TNF-a), Immunoglobulin G (IgG) and the reduction of interleukin-6 (IL-6). At the same time, IL-10 production in spleen lymphocytes was also significantly reduced, which also reduced the Th2 response. And histopathological examinations with RJ were more effective.

Conclusion: The results confirm that RJ can improve immunity in 4T1-bearing mice, and the effect of RJ on the mice immunity would be associated with its antitumor effect of RJ.

Author(s): Shuang Zhang, Qiqi Shao, Zhenhuang Shen, Songkun Su

Abstract Full Text PDF

Get the App