Biomedical Research

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
Reach Us +1-504-608-2390

Research Article - Biomedical Research (2020) Volume 31, Issue 3

Analysis of feature extraction techniques using lung cancer image in computed tomography


 The precise identification and characterization of small pulmonary nodules at low-dose CT is a necessary requirement for the completion of valuable lung cancer screening. It is compulsory to develop some automated tool, in order to detect pulmonary nodules at low dose CT at the beginning stage itself. The numerous algorithms had been proposed earlier by many researchers in the past, but, the accuracy of prediction is always a challenging task. In this work, an artificial neural network based methodology is proposed to find the irregular growth of lung tissues. Higher probability of detection is taken as a goal to get an automated tool, with great accuracy. The finest feature sets derived from Haralick Gray level co-occurrence Matrix and used as the dimension reduction way for feeding neural network. In this work, a binary Binary classifier neural network has been proposed to identify the normal images out of all the images. The capability of the proposed neural network has been quantitatively computed using confusion matrix and found in terms of classification accuracy.

Author(s): Pandian R, Lalitha Kumari S, Ravi Kumar DNS

Abstract Full Text PDF

Get the App