Biomedical Research

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
Reach Us +44-7360-538437

Review Article - Biomedical Research (2018) Volume 29, Issue 17

A systemic approach on understanding the role of moisture in pharmaceutical product degradation and its prevention: challenges and perspectives

The review article explores the various problems associated with hydrolysis which occurs during formulation and the various solutions of it. The moisture content either the drug or the excipients affect the formulation, by hydrolysis, thus it is important to find out ways to prevent it and thus protect the formulation and provide a greater stability under processing and storage condition. The common moisture interactions which occur are water-solid interactions, water-amorphous solid interactions, drug-excipient interactions and the change in the crystal habit of the solids. The science behind the hydrolysis is due to the moisture sensitive functional group of the ingredient, and the other freely moveable living groups. Amides, lactams, esters, lactones, chloride are the functional groups most susceptible to hydrolysis. The hydrolysis of excipients, including both polymeric and non-polymeric also show great impact on the stability of the drugs. The excipients used in the form of sweeteners, plasticizers, solvents, surfactants, wetting agents, emollients, antioxidants, lubricants, preservatives, and etc. have effects on the drug stability. As a result, several solutions are found to prevent unwanted hydrolysis in different dosage forms. The main parameters which are likely to solve this issue are pH, buffers, surfactants, non-aqueous solutions, suspensions, lyophilization, packaging and an adequate proportion of the desiccant use.

Author(s): Sukanta Roy, Sabahuddin Siddique, Shramana Majumder, Mohi Iqbal Mohammed Abdul, Syed Ata Ur Rahman, Durdana Lateef, Shubhasis Dan, Anirbandeep Bose

Abstract Full Text PDF

Get the App