Biomedical Research

Research Article - Biomedical Research (2017) Volume 0, Issue 0

Experimental study on effect of calcitonin on osteoclast functions

Objective: It's aimed to study the effect of calcitonins on osteoclast functions.

Method: Osteoclasts were acquired from 10 neogenic SD rats by mechanical separation method and then cultured in vitro by bone marrow derivation method; the calcitonins with different consistencies were added into the culture media, the numbers and forms of calcitonins were observed after tartrateresistant acid phosphatase staining, the changes in numbers and forms of bone resorption lacunas were analyzed with an image software of Image Pro Plus after 48h culturing and finally the apoptosis rate was measured by a flow cytometer.

Result: In general, osteoclast was irregular and took the shape of strip, omelette, funnel or sausage and contains several to scores of nucleuses. The active element of tartrate-resistant acid phosphatase was granular and claret-red. The number of tartrate-resistant acid phosphatase-positive cells in the culture medium without calcitonin was (25.1 ± 3.4)/tablet; the number of tartrate-resistant acid phosphatasepositive cells in the calcitonin medium at concentration of 10-8 mol/L and 10-9 mol/L was (9.0 ± 2.6)/ tablet and (12.5 ± 3.8)/tablet, respectively, which were significantly less than those in the control group (P<0.01); 10-10 mol/(16.9 ± 4.1)/tablet, and there was significant difference between the two groups (P<0.01). The number of tartrate-resistant acid phosphatase positive cells in the calcitonin culture medium at the concentration of 10-10 mol/L was (16.9 ± 4.1)/tablet, significantly higher than that in the control group (P<0.05). The apoptosis rate of osteoclast rose as a function of the increase of calcitonin consistency.

Conclusion: Calcitonin was capable to inhibit proliferation of osteoclast, promote the apoptosis of osteoclast and further inhibit absorption function of osteoclast and was in positively correlated with the dose.

Author(s): Shunyu Wang, Xiaoying Yan

Abstract Full Text PDF