Journal of Clinical and Bioanalytical Chemistry

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
Reach Us +44-1518-081136

Short Article - Journal of Clinical and Bioanalytical Chemistry (2021) Volume 5, Issue 1

The Influence of Plants in the Remediation of Petroleum Hydrocarbon Contaminated Sites

Petroleum hydrocarbon contamination is an environmental concern. Of the various hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) are a major worry because they cause many health problems including cancer and the inflammation of tissue in humans. So, it is necessary to remediate contaminated sites. Sites with diffuse low to medium level pollution can be remediated with the use of biological techniques, such as phytoremediation. Phytoremediation is a low input biotechnology approach: it relies on the knowledge that natural attenuation by biodegradation and physicochemical mechanisms will decrease the pollutant concentration. Limited PAH uptake by plant roots also takes place. This is influenced by both the organic content of the soil in which the plants are grown and the plant root lipid contents. Plant responses to growth in soils contaminated with petroleum hydrocarbons need to be taken into account, if plants are to be used to clean up petroleum hydrocarbon contamination. Different plant species show various stress responses and adaptations to survive the stress conditions caused by hydrocarbonpollution. The responses of plants also vary with the type and amount of the contaminant as well as duration of exposure. Phytoremediation can be feasible if appropriate plant species are selected. They must show sufficient morphological plasticity to survive stress situations induced by hydrocarbon-contamination, have an extended rhizosphere and appropriate root exudate patterns, positively influence the growth of hydrocarbon-degrading microorganisms in contaminated soil, and should also limit the uptake of toxic molecules through various adaptations to the root ultrastructure and cell wall components.

Author(s): Anuluxshy Balasubramaniyam

Abstract Full Text PDF

Get the App