Biomedical Research

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
Reach Us +44-7360-538437

- Biomedical Research (2015) Volume 26, Issue 3

Method for quantitative determination of matrine in Sophora alopecuroides L. and its inhibitory effect on breast cancer MCF-7 cell proliferation.

To explore the method for quantitative determination of active constituent in Sophora alopecuroides L. and its anti-cancer activity. Method for quantitative determination of matrine in Sophora alopecuroides L. is established using HPLC with CLC-phenyl column, mobile phase of acetonitrile-anhydrous ethanol-3% phosphoric acid solution (80:10:10), detection wavelength of 220 nm and flow rate of 1.0 mL·min-1. Breast cancer MCF-7 cells are cultured by routine method. Inhibitory effect of matrine on breast cancer MCF-7 cell proliferation is determined by MTT assay. Flow cytometry is used to analyze the changes in cell cycle after treatment, and record percentages of Bax and Bcl-2 positive cells. 48 h after treatment with test concentrations of matrine, cell cycle of MCF-7 cells are evidently altered. With the addition of matrine, S phase MCF-7 cells are markedly reduced, and G0/G1 phase cells markedly increase, while G2/M phase cells do not change much. Flow cytometry results show that the test concentrations of matrine can effectively inhibit the viability of MCF-7 cells, and promote their apoptosis. Different concentrations of matrine can all somewhat increase the positive rate of Bax expression, and the effect exhibits an increasing trend with increasing concentration. Bcl-2 expressions of treatment groups are all evidently lower than the control group, showing a negative correlation. HPLC method is reliable and accurate in determining alkaloids in Sophora alopecuroides L., and matrine in Sophora alopecuroides L. can effectively inhibit the proliferation of breast cancer MCF-7 cells.

Author(s): Yongyun Shi, Guodong Shen, Hanlin Fang, Chuankui Xu, Shilian Hu

Abstract Full Text PDF

Get the App