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Abstract

Gastric cancer is one of the most common malignancies and ranks the second highest mortality in the
world today. With this great progress, understanding of tumors is still a wide area to study. We utilized
the distance correlation as the measurement of the relevance to construct the gene co-expression
networks in both gastric cancer and normal tissue datasets respectively, also to define the complex
interactions among genes with nonlinear property preserved and examine from the genes that have
important roles in the gastric cancer formation. The genes which are extant in the module of normal-
associated network but missing in the module of cancer-associated network are selected for further
study and we call these genes stray genes. The results show the stray genes are enriched in up-regulation
and the connectivity of all the genes appear the circumstance of loss in the gastric cancer network,
especially to the stray genes. These results indicate that the activation of these stray genes may play
important roles in the gastric cancer. We use PANTHER for Gene Ontology (GO) analysis and the
results show that these stray genes are enriched in some biological processes, including cell cycle,
chromosome segregation, DNA replication and p53 pathway and others. These results prove the
effectiveness of our method for cancer-related genes identification and these cancer-related genes can be
selected for further analysis.
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Introduction
Cancer is one of the causes of death in the world and gastric
cancer is one of the most common malignancies and ranks the
second highest mortality [1]. Although much progress has been
made to elucidate its pathogenesis so far, the understanding of
tumorigenicity remains far from being complete. In the
analysis of the genetic pattern in gastric cancer tissues, one of
the commonly used methods is the differential expression
analysis [2-6], which detects potential cancer associated genes
based on the assumption that the prognostic genes may express
significantly differentially in the cancer tissues compared to
their normal counterparts. However, more and more evidences
have revealed that the carcinogenesis is a complex process
involving the gradual accumulation of genetic mutations and it
can cause disease through altering the interaction patterns
between genes [7,8]. Recently, gene co-expression network
approaches have become an important tool to characterize gene
connectivity and much useful information has been obtained
[9]. The Weighted Gene Correlation Network Analysis
(WGCNA) [10-13] is a well-established method designed for
constructing co-expression networks from gene expression
data. Most widely used gene co-expression network methods
[14-16] are based on the linear dependence (Pearson
correlation), which can be calculated conveniently. However,

the linear relevance can only describe or approximate a
fraction of the true relationship types observed in a biology
system [17], the nonlinear dependence is still an extremely
important part. The most popular method that applied to
measure the nonlinear dependence is Mutual Information (MI),
which measures how much information one random variable
contributes to another. Even though MI is successfully applied
in various circumstances, it still has its limitations. As the
fundamental stage of the MI estimation, the accurate density
estimation remains a challenging task, especially when the
sample size is small. Distance Correlation (dCor) [18,19] is a
new measurement of all types of dependence between two
random vectors that uses the distance between observations as
part of its calculation. Compared to the MI method, dCor is
more powerful in most cases except the somewhat pathological
high-frequency sine wave [20]. Moreover, dCor is also quite
simple to compute and doesn't need any density assumptions.

In this research, we intend to analyse the nonlinear co-
expression network of gastric cancer with the RNA-seq data
and investigate genes that play important roles in
carcinogenesis. We first construct the cancer-associated
network and normal-associated network based on dCor and
then identify modules in the two networks respectively.
Through comparing the modules of the two networks, we
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select the genes which show in the module of normal-
associated network but are absent in the module of cancer-
associated network for further analysis. We noticed that the
stray genes are significantly enriched in up-regulation and the
connectivity of most genes in the gastric cancer network
decreases compared to normal ones and the stray genes show
more drastic decrease than other genes. This indicates that
these up-regulated stray genes may play important roles in the
gastric cancer formation. To verify our hypothesis, we perform
GO analysis and we find that these stray genes are enriched in
the biological processes (such as cell cycle, mitosis and
chromosome segregation) and pathways (DNA replication and
p53 pathway), that are related closely to the cancer.

Methods

Distance correlation
Distance correlation is creative measurement of nonlinear
association that uses the distance between two random
variables as part of its calculation. The value of distance
correlation is in the range of (0, 1) and equal to zero if and only
if the random variables are statistically independent. Suppose
that we have an expression dataset with n samples and m
genes. Let (Xi, Yi), i=1, 2,.. n be a sample from a pair of gene
expression vector (X,Y). Then the distance of all pairs can be
computed as:

ei, j=||Xi-Xj||, ci, j=||Yi-Yj||, i, j=1, 2,…, n → (1)

Where ||.|| denotes the Euclidean norm. Then take all doubly
centered distances matrixes ��, �: = ��, �− �� . − � . �+ �.. and��, �: = ��, �− �� . − � . �+ �.., where��. is the ith row mean,
where � . �is the jth column mean, and �.. is the grand mean of
distance matrix of X. The notation is similar for b value. The
squared distance covariance of X and Y can be simply
composed as:

����2: =   1�2∑�,   � = 1
� ��, ���, � (2)

With the distance covariance, the distance correlation can be
defined as:���� �,� : = ���� �,����� �,� ���� �,� (3)
Nonlinear weighted
Co-expression network is a useful approach to describing the
pairwise relationships between genes. Given n samples and m
genes associated with a given phenotype, the expression profile
can be represented by an n × m matrix. E co-expression
network can be fully specified by a symmetric m × n adjacency
matrix E=[ei, j], where ei, j [0,1]. For a weigh network, the
adjacency matrix measures the connection strength between
gene pairs. To calculate the adjacency matrix, we must define
the co-expression similarity si, j first. We define the distance
correlation between genes as the co-expression similarity.
Following the method mentioned in WGCNA [11], we

transform the co-expression similarity to the adjacency matrix
with a power, ei,j=|Si,j|β. To reflect the gene-gene relative inter-
connectedness, we use a topological overlap matrix
ETOM[eTOMi,j] to measure the association of the gene Paris. The
value of eTOMi,j, can be calculated as follow:��, ���� = ∑���, ���, �+ ��, �min(∑���, �,   ∑���, �,)− ��, �+ 1 (4)
The genes composing of the nodes of the network and the
weight of edges among genes are represented by the TOM-
based adjacency matrix. For a complex network, the
connectivity is one of the most elementary measurements,
which is defined as the sum of the weights across all edges of a
node. For the ith node, we denote the connectivity by ki. In
terms of the TOM-based adjacent matrix, ki can be evaluated
as:

�� =∑� = 1
� ��, ���� (5)

For fair comparison, we divide the connectivity of each gene
by the maximum network connectivity and obtain the scaled
form,�� = ��������� (6)
Results
The gastric cancer datasets is obtained from the TCGA project
webpage [21]. Only the mRNA sequencing data available in
both the tumor matched and normal matched samples, which
include 29 pairs of gastric carcinoma and the matched normal
samples, are selected for further analysis. To normalize the
gene expression and reduce the samples bias we applied TMM
(trimmed mean of M-values) method [22]. In the initial
analysis, DESeq method [3] is used to identify the genes which
are differentially expressed and 1880 genes are obtain with
adjust p-value less than 0.01. These differential expressed
genes consist of 741 up-regulated genes and 1139 down-
regulated genes, which will be used to construct the cancer and
normal nonlinear co-expression network, respectively. The
structure of the co-expression networks are further studied
through the hierarchical clustering based on average linkage
and the TOM value as a distance measure. Finally a
dendrogram is created. The modules in the dendrogram are
detected using dynamic hybrid tree cut algorithm provided in R
package WCGNA as function cutree Dynamic [23]. The
parameters cut Height and min Cluster Size are set to be 0.9
and 100. Finally, we obtain only one module in both the cancer
and normal co-expression network and the results are shown in
Figure 1. In the Figure 1, the modules are designated by black
and the gray region denotes genes outside of module. 335
genes are present in the module of cancer-associated network
and 871 are in the module of normal-associated network. The
number of the genes that are present in the both modules is 299
and the number of genes that is present only in the module of
normal-associated network is 600. We consider these 600
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genes as stray genes. Then, we analyse the gene expression
pattern of the stray genes. These stray genes consist of 289 up-
regulated genes and 301 down-regulated genes. A bar plot is
shown in Figure 2a. With the exact binomial test, we find that
the stray genes are enriched in up-regulated. To explore their
biological significance, we carry out GO and pathway
enrichment analyses with the online software PANTHER [24].

In this study, overrepresented GO terms in biological process
with Bonferroni corrected p-values less than 0.01 are
considered significantly enriched. Finally, 10 terms are
recognized and the top 5 significant among them are shown in
Table 1, including cell cycle and chromosome segregation.
Pathway enrichment analysis is also carried out with
PANTHER. Significantly enriched pathways with the p-value
less than 0.01 are also listed in Table 2. In this part, we will
present analyse the connectivity of the genes in the module and
the switching between the cancer and normal conditions. For
each gene in the “black” module, we calculate its connectivity
in the cancer-associated network and normal-associated
network according Equation 6. We compare the connectivity of
each gene in the both networks and the result is shown in
Figure 2b.

Figure 1. Clustering dendrogram of genes, (a) Gene co-expression
modules in the gastric cancer-associated network. (b) Gene co-
expression modules in the normal-associated network.

Figure 2. (a) The proportions of the up-regulated genes and the
down-regulated genes in the stray genes and the total differentially
expressed genes. (b) The connectivity comparison of the interested
genes between the cancer-associated network and the normal-
associated network.

Table 1. The GO enrichment result.

GO term Gene number Expected number P value

Cell cycle 59 13.9 4.60E-11

Mitosis 36 6.03 4.10E-30

Chromosome segregation 18 2.77 7.15E-90

Cytokinesis 16 3.22 2.56E-77

Cellular process 120 69.01 6.58E-11

Table 2. PANTHER pathways enrichment results.

Pathways Genes P value

DNA replication TOP2A, RNASEH2A, DNA2, RFC3, PCNA 3.51E-04

p53 pathway CCNB1, GTSE1, CDKN2A, PIK3R2, TRAF2,
RRM2, CDC25A

8.01E-07

From the Figure 2, we can also find that the connectivity of
genes in the cancer- associated network is mostly less than that
it in the normal-associated network, which means the loss of
connectivity in the gastric cancer network and such
phenomenon is also observed in [8]. Moreover, we also
observe that the stray genes, which are colored by black,
occupy the top-left part of the plot, which means that these
genes play a role of hubs in the normal-associated network
while losing their position in the cancer-associated network. In
Figure 2 we can see the proportion of the interested genes in
the stray genes and their connectivity switching between the
cancer-associated and normal-associated networks.

Conclusions
This study is aims to analyse the difference of non-linear gene
co-expression network between cancer-associated network and
normal-associated network. We first introduce the TMM
method to normalize the gene expression to reduce the bias of
samples. Then, the significantly differentially expressed genes
which are detected with the DESeq method are used to
construct the co-expression network. To protect the non- linear
nature of the biological system, we use the dCor, which is
powerful in most cases, to measure the dependence between
genes and replace the original correlation measure in WGCNA
to construct the non-linear weighted gene co-expression
network for both the gastric cancer and normal samples. To
find interested genes in all the differentially expressed genes,
we identify the modules in the two networks respectively and
find only one module in each network. The genes which are in
the module of normal-association but not in the module of
cancer-association network are selected for further analysis and
call these genes stray genes for easy reference.

Three aspects are discussed in this paper for these stray genes,
which are regulation of gene expression, difference of
connectivity between the two networks and the biological
validation. We find that in the stray genes, the proportion of the
up-regulated genes are enriched compared to the total
differentially expressed genes. Through comparing the
connectivity of genes between the two networks, we find that
most genes display a trend of loss of connectivity in the
cancer-associated network. Especially for the stray genes, they
all have a lager connectivity value in the normal-associated
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network while the values are decreased greatly in the cancer-
associated network. The discoveries of the switching of gene
expression and connectivity inspire us to explore the biological
implication of the activation of stray genes. We performed GO
analysis to examine the biological process and the pathway
enrichment for the up-regulated genes in the stray genes. The
results show that these up-regulated genes are enriched in the
biological process such as cell cycle, mitosis and chromosome
segregation which are related closely to the cancer. The
pathway enrichment test results also indicate that these up-
regulated genes play important roles to the gastric cancer
formation and these genes will be useful to the diagnosis of
gastric cancer.
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