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Abstract

Bone morphogenetic protein 2 (BMP-2) is a family member of the transforming growth factor-beta
(TGF-β) superfamily and firstly recognized in early embryonic and postnatal development. BMP-2 has
been reported to have crucial role in bone and cartilage formation, tissues and organs development,
regulate cell differentiation, proliferation, angiogenesis, morphogenesis, chemotaxis, cellular survival
and apoptosis. The BMPs are also identified as factors in tumor development and propagation;
distinctly associated to diverse sides of carcinogenesis. The theory of cancer stem cells (CSCs)
hypothesized that only a small hierarchical organization of cells is assisting tumorigenesis and inheriting
cellular heterogeneity throughout long-life primary tumor. Reprogramming of CSCs using induced
pluripotent stem cell (iPSC) approach possibly benefits in identifying the CSCs-related oncogenes,
tumor-suppressor genes, and interactions between CSCs-related genes and the cancer
microenvironment. Moreover, the reprogramming technology may provide crucial information related
to cancer initiation and progression. This review will be focusing on BMP-2 signaling in modulating
normal cells, human diseases, and cancer progression and suppression. Furthermore, this review will
provide summary of updated reports on the role of BMP-2 in the developments of CSCs and its possible
role as therapy through reprogramming technology by BMP-2 as an important regulatory factor in
modulating the proliferation and aggressive properties of CSCs.
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Introduction
Bone morphogenetic proteins (BMPs) are well established as
multi-functional cytokines; a family member of the
transforming growth factor-beta (TGF-β) superfamily and
firstly recognized in early embryonic and postnatal
development. It was discovered in the late 1980s by Wozney et
al. [1] based on the previous study which reported the activity
of BMPs [2]. Following studies have reported BMPs to have
crucial role in the formation of bone and cartilage.
Furthermore, BMPs have been known to be part of tissues and
organs development, regulate cell differentiation, proliferation,
angiogenesis, morphogenesis, chemotaxis, cellular survival and
apoptosis [3-5]. The BMPs are also identified as factors in
tumor development and propagation; distinctly associated to
diverse sides of carcinogenesis [6].

BMPs are categorized into four subgroups based on the
structure, amino acid and the similarity of the nucleotide. Its

phylogenetic comprises of BMP-2 and BMP-4, BMP-5,
BMP-6, BMP-7 and BMP-8, BMP-9 and BMP-10, and
BMP-12, BMP-13 and BMP-14 (GDF-5, GDF-6 and GDF-7)
[7]. BMP-2 is known as osteogenic BMP which is based on its
strong bone-inducing activity [8] and essential for
endochondral bone formation [9]. BMP-2 is previously
reported to promote the transformation process of
undifferentiated cells at the beginning state [10]; induce bone
and cartilage formation in vivo [11]; involve in cell
differentiation, proliferation and apoptosis [5]; and the more
recent studies regarding BMP-2 centering around regulation on
tumorigenesis in several cancers [12-15].

Stem cells are undifferentiated cells, have self-renewal
capability and can differentiate into specific matured cell types.
Embryonic stem cells (ESCs) are pluripotent stem cells that
able to differentiate to generate all types of tissues during
embryonic development, whereas the adult stem cells (ASCs)
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are crucial in replacing and repairing specific adult tissues [16].
Induced pluripotent stem cells (iPSCs) are reprogrammed
somatic cells using specific measurements into stem cell-like
cells, which have similar properties with embryonic stem cells
[17]. Another important stem cell-like cell is the cancer stem
cells (CSCs) which considered as a subpopulation of such stem
cells. As the CSCs are found within tumors, their
characteristics are similar to both stem cells and cancer cells.
Uniquely, their asymmetrical cell division and alteration in
gene regulations differentiate them from the normal stem cells
[18,19].

The term reprogramming, in biology, refers to the reversing
process of differentiated cells back into embryonic state. This
biological reprogramming technology started to emerge in
2006 when Takahashi et al. demonstrated that by altering four
genes, octamer 4 (Oct4), SRY box-containing gene 2 (Sox2),
Kruppel-like factor 4 (Klf4) and oncogene c-Myc (OSKM) in
adult mouse cells, a reprogrammed induced pluripotent stem
cells (iPSCs) can be created, thus could be used in human
medicine [17]. This reprogramming method has been used for
reprogramming many types of cells including cancer cells due
to similarity between CSCs and normal stem cells.

This review aims to provide an inclusive understanding of
BMP-2 signaling in modulating normal cells, human bone-
related and non-bone diseases, and importantly cancer
progression and suppression. Additionally, this review also
emphasizes updated research reports on the role of BMP-2 in
the developments of CSCs alongside normal stem cells and the
possible future therapies utilizing reprogramming method on
BMP-2 as an important regulatory tool in modulating the
development of CSCs.

Role of BMP-2 in Normal and Disease Cellular
Progression
Signaling pathways involving BMPs progression are divided
into canonical and non-canonical pathways. In general, BMPs
signaling pathway is functioning when a heterotetrameric
signaling dimer complexes of type 1 and type 2 receptors is
formed. All receptors have a short extracellular domain, a
single transmembrane domain, and an intracellular domain.
Type 1 receptor consists of seven receptors, activin A receptor
like type 1 (ACVRL1), activin A receptor type 1 (ACVR1),
activin A receptor type 1B (ACVR1B), activin A receptor type
1C (ACVR1C), bone morphogenetic protein receptor type 1A
(BMPR1A), bone morphogenetic protein receptor type 1B
(BMPR1B) and transforming growth factor beta receptor 1
(TGF-βR2), and five type 2 receptors, activin A receptor type
2A (ACVR2A), activin A receptor type 2B (ACVR2B), anti-
Mullerian hormone receptor type 2 (AMHR2), bone
morphogenetic protein receptor type 2 (BMPR2) and
transforming growth factor beta type 2 (TGF-βR2) [20]. The
heterotetrameric signaling complex mechanisms can be altered
depending on what type of BMPs is initiated hence can activate
different pathways. The signal transduction cascade triggered
by the canonical pathway by binding to cell surface receptors
and creating a heterotetrameric dimer complexes of type 1 and

type 2 receptors [21]. For example, BMP-2 and BMP-4 are
preferred to bind to type 1 receptors and only enlisted type 2
receptors, while BMP-6 and BMP-7 interact with type 2
receptors and recruit type 1 receptors [22]. On the other hand,
non-canonical pathways such as mitogen-activated protein
kinase (MAPK) and Smad-independent signaling pathway are
led to regulation of gene expression. Moreover, BMP signaling
is also being regulated by intracellular (PKBP12, microRNAs,
phosphatases, and I-Smads), extracellular (Noggin), and
membrane (Endoglin) modulators [23]. Such example of non-
canonical pathway of BMP-2 is reported in development of the
dental epithelium where TGF-β signaling initially triggered the
activation of Smad1, Smad5 and Smad8 in this tissue. The
report mentioned that the levels of P-Smad1, P-Smad5, and P-
Smad8 are maintained in both dorsomorphin-treated dental
epithelium of the tooth germs and the dental epithelium of
Msx1 mutant, in which BMP-2 expression is decreased [24].

BMPs are considered as powerful stimulators for both bone
formation and other related cellular functions. BMPs activities
are controlled by specific molecular proteins at specific
molecular levels. These activities can be either a list of BMP
antagonists bind BMP ligands and inhibit BMP functions, the
binding of Smad6 to type 1 BMP receptors prevents the
binding and phosphorylation of Smad1 and 5 [25], or a
selectively binding of tob (an anti-proliferative protein) to
Smad1 and 5, thus blocks BMP signaling in osteoblasts [26], or
even interaction of Smurf1, an E3 ubiquitin ligase (Smad
ubiquitin regulatory factor 1) together with Smad1 and 5,
mediates the degradation of the Smad proteins [27].

BMP-2 has been shown to have physiological function in both
bone formation and development. This role had been
demonstrated by Chen et al. by injecting BMP-2 around the
calvariae of mice’s surface, hence inducing the formation of
periosteal bone locally without an initial cartilage step [28].
BMP-2 has been demonstrated to regulate proliferation and
osteogenesis, and lacking of BMP-2 will results in serious
defects in repair sites of the osteoblasts [29,30]. Moreover,
BMP-2 can inhibit the differentiation of osteoprogenitor cells
originated from multipotential mesenchymal cells into
osteoblasts [31]. Inadequate level of BMP-2 will also slow
down the process of bone healing and repair.

BMP-2 also has been associated with osteoarthritis (OA). OA
is a disease which affects synovial joints, like knee, hip and
hand due to degeneration of articular cartilage. Degeneration of
cartilage of OA tissues [32] and chondrocyte hypertrophy
might be due to dysregulation of BMP-2 response [33]. Some
indicators of disease severity and joint arthroplasty is higher
level of BMP-2 and BMP-4 serum, but there was no
association of BMP-2 and BMP-5 in OA progression [34,35].

The BMP-2 antagonist’s mutations have unveiled the
importance of BMPs that is being modulated in a specific
system. For instant, proximal symphalangism and multiple
synostoses syndrome caused by heterozygous mutations of the
human noggin gene, have the same symptoms. Proximal
symphalangism, is a disorder which has an autosomal-
dominant with conductive deafness, carpal and tarsal bone
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fusion, and ankylosis of the proximal interphalangeal joint
[36,37], while multiple synostoses syndrome is a disorder of
joint morphogenesis [38]. In these disorders, noggin protein
will bind and inactivated BMP-2, 4 and 7. In addition, 3D
crystal structure clearly demonstrates the function of noggin
which mainly targets BMP-2, 4 and 7, hence inhibits them
[39]. Furthermore, BMP-induced and Smad-dependent
transcription in osteoblasts were inhibited by Tob and
associated with Smad1 and Smad5 proteins [40]. The Tob
consists of Tob, Tob2, BTG1, BTG2 and BTG3 are belonging
to an anti-proliferative protein family [41]. The study of Tob in
knockout mice has demonstrated that the higher level of
BMP-2 effects on osteoblast proliferation, differentiation and
the local bone formation [42].

In general, BMPs have multifunctional cytokines. Not only
BMPs regulate the development of both bone and cartilage, but
BMPs also take part in many non-osteogenic development
processes. BMPs play crucial roles in maintaining adult’s
tissue homeostasis and depletion of BMP production of
functionality normally causes marked defects or severe
pathologies. Ectodermal cell fates for example, are determined
by neural induction [16] and BMPs perform as indicator of
epidermal induction [43]. BMP-2 in focus, administers
neuronal phenotypes developmental from neural crest cells
[44]. The process of myogenesis is being inhibited by BMPs
when they direct the somite development. For example in the
limb bud, when BMP-2 interacts with the fibroblast growth
factor 4 and sonic hedgehog, the expansion is inhibited, and the
chondrocytes and osteoblast precursors formation is induced
[45,46].

The BMP-2 potential in inducing bone and cartilage formation
can also be used to understand the mechanism of certain
diseases, hence using recombinant human BMP-2 (rhBMP-2)
in disease treatments is applied. Such in cleft palate (CP), an
observable birth defect that has multiple etiologies, BMP-2 is
involved in palate morphogenesis in development, and
syndromic CP is associated with haploinsufficiency of BMP-2
[47]. In embryogenesis, deletion of BMP-2 may results in
embryonic lethality and previous report had shown that the
malfunction of amnion/chorion and cardiac development
happened in BMP-2 deficient mice [48]. Meanwhile, BMP-2
also modulates cartilage development, and for chondrocyte
proliferation and maturation, BMP-2 is considered as a main
factor in endochondral bone development [9]. BMP-2 also may
results in a serious chondrodysplasia phenotype, a congenital
disorder of bone and cartilage development [49]. Additionally,
BMP-2 is important in homeostasis and fracture healing.
BMP-2 initiates the fracture healing and limb-specific BMP-2
knockouts, a down-regulated of BMP-2 results in sudden
fractures and fails to start the healing process [50].

The BMP-2 signaling is also required for normal growth and
morphogenesis of the developing gastrointestinal tract [51].
Additionally, BMP-2 homozygous mutants caused
abnormalities in the development of the heart, results in
malformation of the amnion, chorion and embryo death [48].
BMP-2 is expressed in both extraembryonic mesoderm and

myocardium, and the BMP-2 signaling in myocardium is
crucial for the formation of endocardial cushion (EC).
Moreover, the regulation of BMP-2 signaling triggers
underlying endothelium forming ECs is depending on an
epithelial-mesenchymal transformation (EMT) [52]. ECs
finally produce the differentiate heart septa and valves, and
allow the development of a mature heart with four chambers.
Specific deletion of BMP-2 in cardiac progenitors block the
formation of the four-chambered heart causing the heart valve
region turns differentiated chamber myocardium. Further study
has confirmed the function of BMP-2 in EC EMT when
deletion of BMP-2 in atrioventricular (AV) happened, plus in
development of cardiac jelly and AV myocardium [53].

Looking at molecular levels of every cells, a single individual
of cell must have some very small differences in their genetic
materials, DNA. Such differences might occur in either by
programmed differences in specialized cells, random mutation
and stability of DNA or chimerism and colonization. There are
many factors can cause continuous alteration of DNA segments
such as environmental damage, chemical degradation, genome
instability, and small but significant errors in DNA replication
and DNA repair [16]. There were so many studies of mutations
of BMPs show the crucial roles of BMPs in various kinds of
inherited diseases. Dysfunction of BMP-2 regulations is also
being associated with the oral epithelium [54] and prostate
cancer cells malignancy [55]. Moreover, further investigations
have been done in the embryonic development and postnatal
life, to investigate on how BMP ligands, receptors and
signaling proteins are functioning by using the null mutations
of these factors in animal models. For instant, inadequate
BMP-2 in mice reduced their ability to survive independently
after birth. Homozygous BMP-2 mutant embryos had cardiac
developmental defect which demonstrated by the heart
development abnormality in the exocoelomic cavity and die
between 7 and 11 days period [48]. In hypertropic cartilage of
BMP-2 null mutant mice, BMP-2 might functionally silent
BMP-6, since BMP-2 and 6 are co-expressed in hypertropic
cartilage [56,57].

BMP-2 as Potential Diseases and Cancer
Therapies
BMP-2 in cancers can have either positive or negative effects
in tumorigenesis and metastasis. BMP-2 can either act as tumor
suppressors or tumor promoters through different mechanisms.
BMP-2 can activate oncogenes, and initiate metastasis
progression in tumor microenvironment. Evidence of BMP-2
and signaling components as a novel biomarker for cancer
treatment with significant therapeutic implications remains
controversial. Due to significant reduction of BMP-2 in
prostate cancer compared to benign prostate tissue, it may
functions as a marker of poor prognosis [58]. Moreover, the
low expression of BMP-2 in epithelial ovarian cancer tissue
also proposed that it probably obtain indigent prognosis of
ovarian cancer patients.

Besides that, BMP-2 has negative modulation on miRNAs.
miRNAs structures are short, non-coding RNAs of 18 to 25
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nucleotides long that important in variety tumorigenic
processes [59]. miRNAs profiling on C2L12 mesenchymal
cells (a BMP-2-stimulated osteogenesis) distinguished two
miRNA representatives and demonstrated miR-133 directly
triggers Runx2, that essential for bone formation, and miR-135
may target SMAD5 (a signal osteogenic transducer of BMP-2)
[60]. Furthermore, BMP-2 also relates to the study of drug
resistance of cancer cells. For example, knockdown of BMP-2
increased chemo-resistance of the MCF-7 in breast cancer cell
line [61], while BMP-2 treatment in in vivo models increased
tumor development and chemotherapy resistance [62]. On the
other hand, Persano et al. demonstrated that based treatment
using BMP-2, escalated the temozolomide response in
glioblastoma multiforme (GBM) cells with hypoxic drug-
resistant and this chemotherapy resistance is reported as one of
the leading factors for poor GBM among the most aggressive
tumor types [63].

BMP-2 has been shown to have the osteoinductive capabilities
in clinical trial studies. Variety of animal models such as mice,
rabbits, dogs, sheep and other laboratory animals are used to
evaluate and demonstrated the capability of BMP-2 to treat
bone deformity in major-sized defects [64]. Such animal
models, massive bone errors are not curable without a
therapeutic interference, thus eases analysis of the BMP-2
abilities in inducing bone. Among the studies are BMP-2-gene
therapy studies where they showed that the implantation of
transfected BMP-2-bone marrow mesenchymal stem cells with
a bioresorbable polymer mixture, healed the bone defects [65].
Additionally, recombinant human BMP-2 (rhBMP-2) that has
been systemically administrated in mouse models, had shown
positive regulation of mesenchymal stem cell activity and
overturn the loss of age-related bone and ovariectomy-induced
[66]. Therefore, BMP-2 might be useful in treating
osteoporosis. Moreover, rhBMP-2 also demonstrated as an
enhancer of bone healing in a rat femoral bone defect model
and a rabbit ulna osteotomy model by delivering rhBMP-2
using a carrier such as calcium phosphate or liposome [67,68].
More clinical studies have shown the utilization of rhBMP-2 as
a complete bone graft replacement in spinal fusion surgery
[69,70] and several studies have demonstrated that the
induction efficacy of BMP-2 in fusion is much way better than
autogenous bone graft [69,71], and very useful in intervertebral
and lumbar posterolateral fusion [72]. In dentistry, BMP-2 also
can induce the formation of new dentine, plus has likely to be a
substitute for root canal surgery and a very effective bone
inducer for periodontal reconstructive implantation [73].

Stem Cell Differentiation and BMP-2
Stem cell biology has contributed a vantage point in addressing
the problems in developmental biology. The development of
human obeys the predetermined dogma from fertilized egg
until it becomes a complete complex, multi-cellular organism.
Stem cells are unspecialized cells, self-renewal and capable to
differentiate into variety of specialized cell types. There are
three types of germ layers developed from the fertilized egg:
endoderm, ectoderm, and mesoderm. From these primitive cell

types, they develop into all tissues of organism [74]. Several
studies have showed that BMP-2 mediated osteogenesis from
mesenchymal stem cell (MSC) precursors. For instance,
improvement of the osteogenic differentiation of stem cells
was triggered by the boost of BMP-2 binding efficiency
[75,76]. Moreover, BMP-2 also has been demonstrated to
activate WNT/β-catenin signaling and promote the
differentiation of human dental pulp cells (HDPCs), which
then mediate by p38 MAPK in vitro [77]. BMP-2 antagonist
noggin has also been reported to regulate human ESCs
differentiation and induce the novel cell types that give rise to
neural precursors [78].

Several cancers originate from blood, brain, breast, skin, and
gut, are derived from a minor group of stem cells from specific
tissues, which function mainly for development, conserve their
proliferation potential and to minimize DNA replication errors
[79]. Adult stem cells are somatic cells that have self-renewal
ability and able to differentiate into specialized cells. Normal
stem cells must possess those two unique abilities as
mentioned before. A normal stem cell is said to be self-renewal
due to its property of producing more identical stem cells with
similar replication potential and development. This ability
enables mass production of the stem cells in response to
intracellular and extracellular environments, hence initiate the
proliferation and regulation of those cells in tissue and organs.
In addition, a normal stem cell must also able to differentiate
into tissue-specific specialized cells. Hematopoietic stem cells
for example normally produce both myeloid and lymphoid
progenitor cells which then give rise to variety of differentiated
cells such as macrophages, monocytes, basophils, neutrophils,
eosinophils, platelets, and erythrocytes (myeloid); T cells, B
cells and natural killer cells (lymphoid) [80,81]. Such ability
has brought attention for scientists to study the growth
potential of stem cells in vitro and in vivo [82,83]. Stem cells
also have a longer lifespan compared to matured cells. In the
blood system for instance, terminally differentiated stem cells
such as macrophages and basophils have a short lifespan
because they generally die after normal tissue maintenance or
cellular damage [84]. Therefore, stem cells are higher
probability to cause the mutation rather than the matured cells.

Mutations resulted from aberrant mitoses in the regulatory
systems that suppress abnormal proliferation. This might
happen during mitotic division when a parent stem cell is self-
renewing itself continuously. Majority of the mutations are
benign because the abnormal cells are usually eradicated from
the normal pool of dividing cells. However, at several phases,
these abnormal cells could get accumulated and might trigger
the development of cancer. Most mutations are affecting
protein regulations of cell division, DNA damages and repair
mechanisms as well as signaling pathways. Stem cells are said
to be the target for mutations because they are the only long-
lived cells in nearly the entire tissues that are vulnerable to
genotoxic stresses compared to their specialized progeny [85].
From stem cell and cancer studies, CSCs emerged and believed
to originate from normal stem cells or progenitor cells, which
promote tumors when encountering specific genetic mutation
or environmental alterations [86]. The study of genetic
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alterations in differentiation of stem cells is a crucial approach
for regeneration of defective tissue in stem cells therapy.
Therefore, adding BMP-2 as a key factor on differentiation of
stem cells is something that is worth to be investigated.

Possible Role of BMP-2 in CSCs Reprogramming
Stem cells role in cancer was discovered in 1994, reported by
Lapidot et al. [87] followed by identification of CSC proposed
by Bonnet and Dick in their research involving human acute
myeloid leukemia (AML) [88]. After sample transplantation
from patients with AML into severe combined immune-
deficient (SCID) mice, they were able to identify an AML-
initiating cell population. CSCs were later identified in many
common solid tumors, including leukemia [87-89], breast
cancer [90], colorectal cancer [91-93], and brain cancer [94].

The theory of CSCs hypothesized that only a small hierarchical
organization of cells is assisting tumorigenesis and inheriting
cellular heterogeneity throughout long-life primary tumor.
CSCs do not really emerge from normal tissue stem cells
modification even though they possess unique stem cell
properties. Moreover, several observations have shown that
cancers are resistant to both chemotherapy and radiation
treatment, hence explains the tumor dormancy and metastasis
phenomenon [95]. The studies of CSCs have encouraged the
advanced treatment strategies for cancers focusing on
eliminating CSCs, and not diminishing tumor size [96]. The
origin of CSCs has speculated that, are they either really
emerged from normal stem cells or normal somatic cells that
gone mad over their regulatory and growth mechanisms?
Perhaps progenitor or differentiated cells can obtain stem cell
properties through mutations and cancer? Either theory
speculated another important question is how CSC is
functioning? CSCs require specific regulatory networks to
exert their carcinogenic functions, such as cytokines from the
cancer cell microenvironments. Therefore, novel cancer
therapies might be developed through the elucidation of these
pathways [97]. Because of the same properties of self-renewal
and differentiation shared by both normal and CSCs, they may
also share similar regulatory mechanisms relating to cell
function stemness. Several pathways including Wnt pathways,
Bmi-1, c-myc, Notch and Hedgehog (Hh) are examples of
shared pathways in both normal and CSCs [98].

CSC studies have contributed to the search of novel cancer
targeted therapies. By targeting the distinct functional and
molecular properties of CSCs, it would be improving the
efficacy of cancer therapies. Clinically, deciphering
mechanisms of chemo- and radioresistance that control in
CSCs is vital. Many targeting strategies are being explored
within the different aspects of CSCs such as self-renewal
pathways, quiescence, radio-resistance and CSC-specific cells
surface molecules as reviewed by Batlle et al. [99]. In addition,
the discrete molecular and functional properties of CSCs may
also represent therapeutic liabilities that could be utilized for
other novel combination strategies development. For BMP-2
and TGF-β family in general, there are few strategies of
treatment under development that combines both anti-CSCs

with chemotherapy. For instance, the self-renewal ability of
triple-negative breast CSCs have been improvably inhibited
using an anti-proliferative agent named paclitaxel by
implicating TGF-β type 1 receptor in in vivo models [100].
Besides, the cronic myeloid leukemia (CML) TGF-β-Akt
signaling inhibition suppressed imatinib cytotoxicity and
apoptosis in CSCs, which sequentially regulated the nuclear
localization of FOXO3a [101]. BMP-2 in specific has been
demonstrated to sensitize glioblastoma stem-like cells to
temozolomide (TMZ) by influencing the stability of hypoxia-
inducible factor-1α (HIF-1α) and O6-methylguanine-DNA-
methyltransferase (MGMT) expression [102].

Elucidating the problems arise as mentioned before about
CSCs may be benefiting for the development of novel cancer
therapies. Such problems may require a new methodology. One
of the most recent technologies is the use of cancer cell-
reprogramming approach using induced pluripotent stem cell
(iPSC) technology. The reprogramming technology allows for
the discovery of CSC-related oncogenes, anti-oncogenes,
tumor-suppressor genes and epigenomes. This method also
benefits for studying the associations between CSC
microenvironment and its related genes, plus the mechanisms
of cancer stem initiation and progression. However, this
reprogramming method still faces so many challenges such as
the chromosomal aberrations, genetic mutations, and cancer-
specific epigenetic. The fundamental knowledge of
reprogramming introduced by Takahashi and Yamanaka of
using four specific transcription factors OSKM by generating
stem cells-like cells provided a stepping stone for more
researches to study the functional mutations of cancer-
associated genes and genome epigenetic alterations, hence
understanding the molecular mechanisms of tumorigenesis in
humans [17].

Previously, BMP-2 has been reported as a key regulator in
several normal and CSCs [103,104]. The reprogramming of
BMP-2 gene modification of iPSC-MSCs for bone tissue
engineering had been done previously. Liu et al. demonstrated
BMP-2-iPSC-MSC on Arg-Gly-Asp-calcium phosphate
cement (RGD-CPC) enhanced differentiation and bone mineral
production [105]. Unfortunately, there is no report about
BMP-2 in the reprogramming of CSCs. Therefore, BMP-2
modulation in iPSC-CSCs is worth to be investigated.

Conclusions
In summary, BMP-2 is one of the most important factors in
regulating bone and cartilage formation. Additionally, BMP-2
also regulates tumorigenesis in several cancers. The studies of
BMP-2 may provide more views and understanding about the
signaling pathways and molecular properties of CSCs hence
utilizing BMP-2 as a modulating factor. Moreover, a precise
approach is needed to deliver the BMP-2 into targeted cells
such as reprogramming technology. Better results are expected
from using the suitable approach thus providing more
conclusive insights on CSCs progression and suppression to
benefit cancer therapy.
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