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Introduction
Pollution has a dire impacts on ecosystems and water bodies are 
among the most vulnerable. Persistent organic pollutants (POPs) 
are semi-volatile compounds, persistent in the environment, and 
toxic to humans and wildlife. Being lipophilic, POPs tend to 
accumulate in food chains and therefore may pose serious threats 
to higher trophic levels of aquatic communities and humans [1-
7]. Due to these characteristics, exposure to these pollutants 
can cause potential health damage [6,7]. Organochlorine 
pesticides (OCPs) and polychlorinated biphenyls (PCBs) 
have been reported by Stockholm convention 2001 and The 
UNECE Protocol on POPs as a worldwide concern. PAHs are 
not included in the Stockholm Convention, but are listed in the 
UNECE (United Nations Economic Commission for Europe) 
Protocol on POPs and US EPA has reported sixteen PAHs as 
priority pollutants.

The persistence of many of the organochlorine pesticides in 
the environment has prompted continued studies aimed at 
evaluating their environmental impacts, including impact on 
wildlife and humans and their regulation worledwide. Although 
Egypt has been banneduse of organochlorine pesticides since the 
1980s, they are still detected in various foods in the country [8]. 
Organochlorine pesticides are lipophilic and stable compounds. 
Their photo-oxidation, low vapour pressure, beside their low 
chemical and biological degradation rates have contributed 
to their accumulation in biological tissues and the subsequent 
magnification in organisms through food chains [9].

PCBs are priority pollutants, with wide impacts on man and his 
environment, including immunotoxicity, endocrine disruption 

and tumor [10]. Despite the fact that the production and sale 
of PCBs has been prohibited in most countries for many 
decades, they still pose potential threats to the health of humans 
and aquatic life. PCBs persist in nature due to the same high 
physical and chemical stabilities that made them attractive for 
industrial use [11].

PAHs are classified as environmentally hazardous pollutants 
due to their known hydrophobic, mutagenic, and carcinogenic 
characteristics [12,13], in addition to their endocrine disrupting 
activity [14-16]. In fish, PAHs have been found to exert their 
toxicity following biotransformation through toxic metabolites, 
which can be bound covalently to cellular macromolecules such 
as proteins, DNA and RNA, causing cell damage, mutagenesis, 
teratogenesis and carcinogenesis [17].

PAHs include two main groups: the Low Molecular Weight 
(LMW, 2-3 rings) PAHs and the High Molecular Weight 
(HMW, 4-6 rings) PAHs. While they can occur through 
natural processes, such as oil leaks or digenesis, the highest 
concentrations are mainly originated from human activities, and 
the primary sources are combustion products. The International 
Agency for Research on Cancer (IARC) has previously classified 
14 out of 50 PAHs as potentially hazardous to mankind. PAHs 
anthropogenic sources include combustion of organic matter 
(pyrolytic PAHs) besides being present in oils (petrogenic 
PAHs). Pyrolytic PAHs are released into the atmosphere, 
followed by their deposition on water and soil. Petrogenic 
PAHs may be discharged directly into water as a result of oil 
spills or naval and offshore oil drilling activities [18]. The ratios 
of certain specific PAH isomers have been applied to infer the 
sources of PAHs [19].

Residues of polycyclic aromatic hydrocarbons (pahs), polychlorinated biphenyls (pcbs) and 
organochlorine pesticides (ocps) were monitored in Lake Temsah ecosystem including fish and 
bivalve species, water and sediment. The concentration of these organic pollutants were in the order 
of pahs>ocps> pcbs. The mean total concentrations of pcbs (Σ 11 pcbs) were in the order of sediment 
(49.8 ng/g), biota (29.7- 44.7 ng/g), water (16.1 ng/ml. PCB118, a dioxin -like congener is detected in 
almost all samples, at concentrations not exceeding 4.5-24% of Σ 11 pcbs. Concentration of pcbs in 
sediment samples (49.8 ng/g) exceeded the Canadian pcbs threshold effect level (TEL) of 21.5 ng/g, 
but were below pcbs probable effect level (PEL) of 189 ng/g. The ocps concentration reported in biota 
were below FDA Regulatory Action Levels of 0.3 μg/g in Fish.

For biota, bioaccumulation factors (BAF) of ocps (23.7-560) were much higher than those of pcbs 
(0.1-12.9) and pahs (0.1-1.2), with heptachlor epoxide showing the highest mean bioaccumulation 
factor (BAF). Similar trend was reported for the biota−sediment accumulation factor (bsafs) 
with values of 0.33 to 5.57 for ocps, 0.11 to 4.53 for pcbs, and 0.16 to 4.47 for pahs. The greatest 
BSAF values were for DDT metabolites.
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Aquatic organisms are among major targets of POPs because 
of their vulnerability to lipophilic contaminants that tend to 
accumulate in their tissues, sometimes reaching alarming 
concentrations [20]. Aquatic organisms are also time integrating, 
since they can indicate the presence of contaminants that 
are no longer in the water, or those whose presence or use is 
intermittent [21]. Their ability to accumulate contaminants in 
their tissues to elevated levels reaching concentrations much 
higher than that of ambient water, makes these biota useful for 
assessment purposes.

Bioaccumulation is the ability of a pollutant to accumulate in 
living tissues at levels higher than those in the surrounding 
environment. It is a process in which a chemical pollutant 
enters the body and is not excreted but rather accumulates in 
the organism's adipose tissues. Bioaccumulation is the net result 
of competing processes of absorption, ingestion, digestion, and 
excretion [22]. Bioaccumulation of chemicals in biota is also a 
chief factor for adverse effects, and ecosystem degradation [23].

The distribution behavior of the contaminants between water 
and biota can be expressed as bioaccumulation factor (BAF) 
[24]. BAF reflects uptake of a substance by aquatic organisms 
exposed to the substance through all routes (i.e., ambient water 
and food), as would occur in nature. Sediment contaminants 
can be released into the overlying water, resulting in potential 
adverse health effects to aquatic organisms [25-27]. Biota 
Sediment Accumulation Factor (BSAF) incorporates all of the 
conditions and parameters influencing the bioaccumulation of 
the chemicals at the measurement site.

Lake Temsah is the main brackish wetland ecosystem in 
governorate of Ismailia. The lake is the major source of 
fishes and bivalves consumed by the local population in the 
surrounding areas. The lake also embraces a number of other 
activities mainly related to fishing and shipping industries. 
The lake is the end point where some municipal, agricultural 
and industrial wastewaters are discharged (ECDG 2002). In 
addition, the corrosion of ships’ hull coatings and the antifouling 
paints on ships awaiting berth would also contribute to lake 
contamination [28].

Monitoring is a repetitive observation for defined purposes of 
one or more chemical or biological elements over time and 
space, using comparable and standardized methods. A regular, 
systematic use of living organisms to evaluate changes in 
environmental or water quality, as in chemical monitoring and 
bioaccumulation monitoring, is called biological biomonitoring 
[29]. Aquatic organisms, including fish and bivalves are sound 
tool to reflect the quality of their environment.

Several monitoring studies have been carried out on the Temsah 
Lake to examine the pollution profile [30-35]. However, none 
of these studies dealt with bioaccumulation of POPs in the lake. 
Therefore the present study aimed to shed some light on the 
levels and profiles of OCPs, PCBs and PAHs in the Temsah 
lake ecosystem compartments (sediment, water and biota). The 
study has also meant to identify sources of contaminants based 
on their profile and to determine the bioaccumulation patterns 
of some of them.

Materials and Methods
Study area
Lake Temsah is a small water body (~15 km2), lies on the 
Suez Canal at mid-way between Port Said and Suez. It lies 
between 30° 23' and 30° 36' N latitude and 30° 16' and 32° 
21' E longitude. The lake has nearly a triangular shape with 
elongated sides extending roughly East-West. The lake receives 
high salinity water from the Suez Canal, mainly from the south, 
beside some drain and freshwater from surrounding areas.

Sampling
Water, sediment and biota samples were collected from four 
sites in the lake Temsah during November 2014.Selection of 
organisms was based on the different niches in which they 
normally thrive within the lake ecosystem.

Two bivalve species, pullet carpet shell (Venerupis pullastra) 
and textile venus clam (Paphia textile) and two fish species 
tilapia and mullet (Tilapia zilli and Mugil cephalus) were 
collected by fishermen stationed at different parts of the lake. 
Fishes had an average weight of 120 to 200 g respectively.

Sediment samples were collected from the top 10-cm layer of 
the lake’s bottom. Samples were air-dried for 14 days, then shell 
and plant fragments were removed by passing the dried sample 
through a 2-mm sieve. The sieved sample was powdered and 
stored in the deep freeze until analysis. The total organic carbon 
(TOC) was determined by Walkley and Black method described 
by Jackson (1967).

Water samples were collected into brown glass bottles pre 
- washed with detergent, rinsed with water and pure acetone 
(99.9%) and then dried before samples collection. Samples 
were taken from 0.1 m below the water surface and transported 
directly to the lab. All samples were sent to central agricultural 
pesticides laboratory in Cairo and biota samples stored in deep- 
freezer at 4°C until the analysis.

Samples preparation
The edible parts of fish and bivalves were homogenized in food 
processor. Incremental samples were mixed and homogenized 
together to obtain an aggregate sample. Fat content was 
determined according to the method of Association of 
Official Analytical Chemists (AQAC) (1995). Organic matter 
determined by using Walkley and Black methods described by 
Jackson (1967).

Samples extraction and clean up
Water samples: Solid-phase extraction method was used to 
separate PAHs and organochlorine pesticides of water samples. 
The 360 mg C18 Sep-Pak cartridges were prepared with 10 ml 
methanol followed by 10 ml demonized water without allowing 
the cartridge to dry out. Then100 ml of water sample was added 
to the cartridge, allowing to pass through at a rate of 6 ml/min. 
The cartridges were then sucked dry for 5 minutes to remove 
all liquid, then the sample eluted with 5 ml ethyl acetate. The 
extract was evaporated with N2, adding 2 ml hexane and then 
transfer it to deep freezer until analysis.
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Sediment samples: 10 g sediment, 10 ml of acetonitrile, 1 g 
of sodium chloride and 4 g of anhydrous magnesium sulfate 
(MgSO4) was added to centrifuge tube (50 ml), the tube were 
closed and the tube vigorously shaken for 1 min using a vortex 
mixer, and centrifuged for 5 min at 4500 rpm and 4°C. An 
aliquot of 1 mL supernatant was transferred to new clean 15-
mL centrifuge tube and cleaned up by dispersive solid-phase 
extraction with 25 mg PSA and 150 mg MgSO4. The sample 
was again vortexed for 1 min and then centrifugation was 
carried out as mentioned above. Then, 1 mL of the supernatant 
were taken, filtered through a 0.22-μm PTFE filter (Millipore, 
Billerica, MA) and transferred into a glass vial for GC analysis.

Biota samples: 10 g homogenized fish, or bivalve, 10 ml 
of acetonitrile, 1 g of sodium chloride and 4 g of anhydrous 
magnesium sulfate was added to centrifuge tube (50 ml), the 
tube were closed and the tube vigorously shaken for 1 min 
using a vortex mixer, and centrifuged for 5 min at 4500 rpm 
and 4°C. An aliquot of 1 mL supernatant was transferred to 
new clean 15-mL centrifuge tube and cleaned up by dispersive 
solid-phase extraction with 25 mg PSA, 25 mg C18 and 150 
mg MgSO4. The sample was again vortexed for 1 min and then 
centrifugation was carried out as mentioned above. Then, 1 mL 
of the supernatant were taken, filtered through a 0.22-μm PTFE 
filter (Millipore, Billerica, MA) and transferred into a glass vial 
for GC analysis.

Determination of OCPs and PCBs
The extracts of OCPs and PCBs were concentrated and injected 
into Gas chromatography (GC) (Aglient 6890) equipped with 
a 63Ni ECD, a split/splitless injection inlet, capillary column 
capability, and a 7683A autosampler. Chemistation software 
was used for instrument control. GC analysis was conducted 
on a HP-5MS (Aglient, Folsom, CA) capillary column of 30 m, 
0.25 mm id., 0.25 μm film thickness. The oven temperature was 
programmed between an initial temperature 160 (2 min hold) to 
240°C at a rate of 5ºC min-1 and was maintained at 240°C for 20 
min. Injector and detector temperature were maintained at 260 
and 320ºC, respectively. Nitrogen was used as a carrier at flow 
rate of 3 ml min-1. All OCPs and PCBs congener's reference 
standards were obtained from Dr. Ehrenstorfer, Augsburg in 
Germany. Method sensitivity and recovery were determined by 
using samples spiked with the tested compounds and congeners. 
Before analysis, relevant standards were run to check column 
performance, peak height, resolution, and limits of detection. 
Peaks were identified by comparison of sample retention 
time value with those of the corresponding of pure standard 
compounds. With each set of samples to be analyzed, a solvent 
blank, a standard mixture and a procedural blank were run in 
sequence to check for contamination, peak identification and 
quantification. The average recovery percentages of OCPs and 
PCBs for fortified samples at different levels were determined 
and calculated for all tested compounds in each aquatic system 
compartment. The average recovery percentages of OCPs and 
PCBs for fortified samples at different levels were determined 
and calculated for all tested compounds in each aquatic system 
compartment. Mean Recovery of organochlorine pollutants were 
86.85 ± 5.4, 83.50 ± 5.12 and 84.71 ± 5.68 in water, sediment and 
fish sample, respectively. PCBs recovery percentage were 93, 
88 and 91% for water, sediment and biota samples respectively.

Determination of PAHs
A gas liquid chromatograph (Hewlett-Packard Model 5890N 
series II) with split/splitless injection system, capillary column 
capability, and flam ionization detector was used for analysis 
of PAHs. GC analysis for PAHs was conducted on a HP-608 
(Agilent, Folsom, CA) fused silica capillary column of 30 m 
length, 0.53 mm id., 0.5 µm film thickness. The oven temperature 
was programmed between an initial temperature 70 (2 min hold) 
to 260°C at a rate of 6°C min-1 and was maintained at 260°C 
for 15 min. Injector and detector temperature were maintained 
at 280 and 300°C, respectively. Nitrogen was used as a carrier 
at flow rate of 4 ml/min. Chemstation software was used for 
instrument control and data analysis. Peak was identified by 
comparison of sample retention time value with those of the 
corresponding of pure standard compounds. The peak identities 
in samples with high PAH levels were further confirmed by GC/
MS analysis.

Quality control
Preparation of blank solution: The same volume of solvents 
and anhydrous sodium sulfate used in extraction of OCPs and 
PCBs from water, sediment and fish samples were subjected 
to the same procedures as the examined samples to detect any 
possible traces of the studies pesticides or PCBs and its value 
was subtracted between the results.

Recoveries were carried out by the addition of PAHs standards 
mixture at different levels. All data were corrected according 
to the recovery percentage values. Compounds were identified 
by matching retention time against those of authentic standard.

For confirmation: Selected samples were analyzed by full scan 
GC-MS to confirm the GC-ECD results. The column used was HP-
5MS (Aglient, Folsom, CA) capillary column of 30 m, 0.25 mm 
id., 0.25 μm film thickness. The carrier gas was helium at a flow 
rate of 0.5 ml min-1. Inlet temperature was 225ºC with injection 
volume of 2 μl (splitless injector). The column temperature was 
set at 70ºC for 1min and then programmed at 10ºC min-1 to reach 
200ºC. GC-MS interface was 280ºC. Chemistation software was 
used for instrument control and data analysis.

Accuracy and sensitivity: Method sensitivity and recovery 
were determined by using samples spiked with the tested 
compounds and congeners. Before analysis, relevant standards 
were run to check column performance, peak height, resolution, 
and limits of detection. Peak was identified by comparison of 
sample retention time value with those of the corresponding 
of pure standard compounds. With each set of samples to be 
analyzed, a solvent blank, a standard mixture and a procedural 
blank were run in sequence to check for contamination, 
peak identification and quantification. The average recovery 
percentages of OCPs and PCBs for fortified samples at different 
levels were determined and calculated for all tested compounds 
in each aquatic system compartment.

Bioaccumulation assessment
Bioaccumulation is measured with the bioaccumulation factor 
(BAF) which is defined as the ratio of the concentration of a 
chemical accumulated inside an organism to its concentration in 
the ambient environment at a steady state (U.S. Environmental 
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Protection Agency, 2010). Biota-Sediment Accumulation 
Factor (BSAF) is a parameter describing bioaccumulation 
of sediment-associated organic compounds into tissues of 
ecological receptors. In essence, it is a fugacity ratio for the 
chemical of interest between the organism and sediment. 
Because the contaminants concentration in water and /or 
sediment were mostly below the detection limit, it was only 
possible to calculate BAF and BSAF only for contaminants 
that mentioned in Tables 1 and 2. The BSAF are calculated 
by dividing the lipid-normalized tissue concentration by the 
organic carbon-normalized sediment concentration [36,37]. 
BAF was calculated according to the equation of Mackay and 
Fraser [38] as follows:

BAF = Cb(μg/kg)/ Cw (μg/L)

BSAF = (Cb / R) / (Cs / oc)

where Cw is the water chemical concentration, Cb is the 
organism chemical concentration (ng/g wet weight), R is the 
lipid content of the organism (g lipid/g wet weight), Cs is the 
surficial sediment chemical concentration (ng/g dry weight) and 
oc is the organic carbon content of the sediments (g organic 
carbon/g sediment dry w) respectively.

Results and Discussion
Polycyclic aromatic hydrocarbons residues
Residual levels of 14 congeners of PAHs in biota, water and 
sediment samples from Lake Temsah are presented in Table 3. 
Generally, many of the PAHs congeners were below their limits 
of detection for all samples. Detected levels of PAHs had the 
descending order of sediment >Mugil cephalus (mallet)>Paphia 
textile>Tilapia zilli (tilapia)> water samples>Venerupis 
pullastra. Based on the lipid content biota samples are 
arranged in the order of Mugil cephalus (0.06), Tilapia zilli 
(0.03), Venerupis pullastra (0.02), and Paphia textile (0.01). 
Discrepancies in the lipid content and PAHs residue level is an 
indication that bioaccumulation is not only governed by lipid 
content but other factors might be also involved.

The mean total PAHs concentrations (14 congeners) in fish and 
bivalves samples ranged from 53.3 to 125.1 and from 42.6 to 
90.8 ng /g respectively. In the current study lipid levels were 
not associated with PAHs concentration in bivalve's samples. 
Water samples showed contamination level of 45.8 ng/ml with 
Benzo (b)fluoranthene and pyrene as the only two detectable 
congeners. In case of the sediment samples, naphthalene, 
benzo(b)fluoranthene and pyrene were the only detectable 
congeners with mean total concentration of 259.4 ng/g . PAHs 
in aquatic systems tend to accumulate in sediments, resulting 
in long-term effects on benthic organisms [39]. After being 
accumulated in sediments, it is difficult for PAHs to decompose 
via photochemical degradation or microbial oxidation [40]. 
As a result, sediments serve as a major reservoir for PAHs 
contamination [41,42]. Humans can be directly or indirectly 
exposed to PAHs in sediments, and so studies of PAHs 
distributions in sediments are urgently needed [43,44].

Residues of PAHs detected in tilapia fish (53.3 ng/g) were less 
than those detected in mullet fish (125.1 ng/g). Such variation 
in the magnitude of PAHs accumulation could be explained in 
view of fat content and the ecological niche of each, with special 
reference to feeding habits, and position in the lake ecosystem. 
Mullet fish feed primarily on detritus residing on the sediment, 
and also on plankton and use gizzard - like stomach to aid with 
digestion [45,46]. With much of the persistent pollutants end 
up on the lake bottom, feeding on bottom detritus, sand and 
mud particles, would allow considerable amount of pollutants 
to move to fish through ingestion [47]. On the other hand, tilapia 
fish is a water column feeder that feed on PAHs while moving 
down the bottom through the water column.

The mean total concentration of PAHs in the bivalve Paphia 
textile (90.8 ng/g) was two times higher than the other bivalve 
(Venerupis pullastra) (42.6 ng/g) . This is possibly because 
Venerupis pullastra lives only few centimeters under the water 
surface while, Paphia textile is an in faunal filter feeding clam 
commonly found in sandy -muddy bottoms of the intertidal and 

Compound Tilapia 
zilli

Mugil 
cephalus  Paphia textile Venerupis 

pullastra
PCBs 

PCB44 2.2 3.1 0.4 0.7
PCB101 0.1 0.1 0.2 0.4
PCB152 12.9 4.5 4.3 0.9
PCB180 0.3 0.4 none 0.4
PCB192 0.5 0.7 none 0.5

PAHs
Pyrene 0.1 0.2 0.2 0.5

Benzo(b) 
fluoranthene none 0.1 0.1 1.2

Organochlorine pesticides
α- HCH 74.4 none none none

Heptchlor epoxide none 560 226.7 none
p,p-DDE 32.7 50.8 102.1 72.4
p,p-DDD none none 65.6 none
p,p-DDT 40 none none none

Heptachlor none none 123.3 none

Table 1. Bioaccumulation factor (BAF) of reported contaminants, 
Lake Temsah.

Tilapia 
zilli

Mugil 
cephalus  

Paphia 
textile

Venerupis 
pullastra

PCBs
PCB52 0.68 0.52 1 2.32
PCB44 4.53 3.26 2.21 2.21
PCB101 0.11 0.06 0.47 0.66
PCB118 0.26 0.14 1.09 0.23
PCB105 0.5 none none 0.86
PCB138 0.13 none 1.96 none
PCB180 0.31 0.19 none 0.61
PCB192 0.62 0.42 none 0.81

PAHs
Naphthalene 0.16 none 0.35 none

Flourene none none 2.79 none
Pyrene 0.83 0.71 3.88 4.47

Organochlorine pesticides
γ-HCH 0.33 none none 0.90

Heptchlor epoxide none 0.75 1.8 none
Dieldrin 0.60 none 1.01 0.19
p,p-DDE 0.59 0.46 5.57 1.97
p,p-DDD none none 5.2 none

Table 2. Biota-sediment accumulation factor (BSAF) of reported 
contaminants, Lake Temsah.
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sub littoral zones of the coastal environment [48], hence having 
the chance to accumulate much of persistent pollutants residing 
on the lakebed.

Previous monitoring programs have reported that the pollution 
level in Lake Temsah is much higher than other wetlands in 
Egypt of other lagoons around [49,33]. Mostafa, [33] reported 
that PAHs contamination level in clams had a mean value of 28.4 
mg /kg for total PAHs and 24.4 mg /kg for carcinogenic PAHs. 
Indeno (1,2,3-cd) pyrene, was the most frequently detected 
congener, followed by benzo(a) pyrene, dibenzo(a,h)anthracene, 
and benzo(b)fluoranthene. Tundo et al. (2004), reported that 
PAHs concentrations for sediment samples from Temsah lake 
are (27.8-544.7 ng/g) with benzo (bkj) fluoranthene had the 
highest concentrations in almost all sampling stations. Ali et al. 
[50] reported Σ 16 PAHs, with concentrations ranging between 
585.9-8592.8 µg/kg in sediment, 1694-4785.7 µg/kg in fish and 
52.46-3393 µg/l in water samples with predominance of high 
molecular weight PAHs in all samples. Similarly, Said and EL 
Agroudy [51] reported a concentration mean of 10.78 μg/ l and 
87.69 μg/g for water and Osteicthyes fish samples respectively, 
with benzo (a) pyrene as the most dominant congener in water 
samples with an average concentration of 3.8 μg/l.

The present results are also below the concentrations of 16 
PAHs reported for water (192.5 to 2651 ng/l) and sediment 
(127.1 to 927.7 ng/g ) from Tonghui River, Beijing varied by 
Zhang et al. [52].

The concentration of total PAHs reported in this study for the 
two fish species are close to the levels determined for the same 
species (tilabia: 19.7 ng/g and mullet: 154.3 ng/g) collected 
from the vicinity of the Temsah lake [53]. This would indicate 
that the concentration level of PAHs in Lake Temsah is almost 
stable for the last ten years.

The spectrum of PAHs in the lake ecosystem, including water, 
biota, and sediment, can provide some information about 
emission source. In the present study, the ratio of high molecular 
weight, to low molecular weight PAHs (HMW-PAHs to LMW-
PAHs) has been used to characterize the origin of PAHs in the 
lake ecosystem (Table 4). The prevalence of LMW PAHs are 
typical for PAHs mixtures generated by petrogenic pollution 
[54].

On the other hand, PAHs emitted from combustion processes 
(pyrolytic origin) would often contain elevated concentrations 
of HMW (e.g., phenanthrene, fluoranthene, pyrene) and fewer 
LMW PAHs [55]. Therefore LMW/HMW>1 suggests a 
petrogenic origin, whereas LMW/HMW<1 indicates pyrolytic 
sources [56]. Likewise, ratios between individual PAHs 
compounds (like Phenanthrene/Anthracene and Flouranthene/
pyrene) are used to identify the processes from which PAHs 
originate [57]. Baumard et al. [58] suggested that because pyrene 
is more stable than fluoranthene, hence pyrolytic products are 
usually characterized by a predominance of fluoranthene over 
pyrene at a ratio>1.

In the current study many of the PAHs congeners were below 
limits of detection, therefore it was not possible to analyze the 
congeners profile for all studied species. In addition, LMW 
PAHs were predominant in all samples with naphthalene as 

the main contributor, with a ratio of 70 %, 56%, 24%, of all 
PAHs for sediment, Tilapia zilli and Paphia textile samples 
respectively. US ATSDR considers naphthalene as a human 
carcinogen [59]. Naphthalene is widely used as an intermediate 
in the production of many surfactants and pesticides [60]. The 
ratio of LMW/HMW were higher than one in Mugil cephalus 
and Paphia textile indicating that the sources of these PAHs is 
petrogenic [61], while the ratio for the other bivalve species 
(Venerupis pullastra) was below one suggesting a pyrogenic 
source of pollution.

PAHs of petrogenic sources show characteristically higher 
proportion of LMW congeners, while pyrogenic PAHs have 
characteristically higher proportion of HWM PAHs (LMW 
/ HMW<1) [61]. The available fluoranthene/pyrene ratio for 
fish species (Tilapia zilli and Mugil cephalus) was below one 
suggesting petrogenic source of PAHs pollution.

The low molecular weight PAHs ( LMW PAHs) are acutely 
toxic to many aquatic organisms, whereas the high molecular 
weight PAHs (HMW PAHs) are strongly carcinogenic and 
mutagenic [62]. In the present study benzo (g,h,i) perylene was 
detected in only one sample of bivalve (Venerupis pullastra), 
while residues of benzo(b)fluoranthene were detected in the 
biota and water samples. Benzo (a) pyrene, commonly used as 
an indicator for PAHs in ambient air and food, has not been 
detected in any samples of water, biota or sediment. Meanwhile, 
benzo (b) fluoranthene and pyrene were the only congeners 
detected in all samples at detectable concentration.

In the present study, PAHs associated risk in sediments was 
assessed by applying the “US Sediment Quality Guidelines” 
(SQGs) [11,63]. SQGs provide two effects-based sediment 
guideline values: effects range-low (ERL) and effects range-
median (ERM), which quantitatively assess the adverse 
biological effects in sediments [64]. Accordingly, PAHs will 
not be harmful to the environment and its biota when their 
concentrations are lower than ERL; while PAHs concentrations 
higher than ERM, will show negative impacts frequently. PAHs 
with concentrations between ERL and ERM are considered to 
be harmful occasionally [63,64]. Concentrations of ΣPAHs in 
sediments of Lake Temsah was less than the ERL value of 4749 
ng/g dw. But mean concentration of naphthalene and flourene 
were 190.2 and 64.4 ng/g dw respectively, exceeding the ERL 
value of 160 and 19 ng/g dw. These results indicated that the 
probability of ecological risk associated with these PAHs was 
below 10% and the adverse biological toxicity effect would 
occur occasionally.

Polychlorinated biphenyls residues levels
Concentration of eleven PCBs congeners are presented in 
Table 5. The levels of different chlorinated congeners varied 
significantly, ranging from ND to 34.6 ng/g in tilapia (Tilapia 
zilli), ND to 12.8 ng/g in mullet (Mugil cephalus), ND to 14.6 
ng/g in Paphia textile, ND to 25 ng/g in Venerupis pullastra, ND 
to 11.5 ng/ml in water and ND to 22.3 ng/g in sediment samples. 
The mean concentrations of total PCBs (Σ 11 PCBs) reported 
in this study were in the order of: sediment (49.8 ng/g)>Tilapia 
zilli (44.7ng/g)>>Venerupis pullastra (33.1 ng/g)>Paphia 
textile (29.2 ng/g)>Mugil cephalus (27.8 ng/g)>water (16.1 
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ng/ml (PCBs are very lipophilic compounds and in many 
studies higher lipid content is associated with higher PCBs 
concentration [65,66]. However, in the current study lipid levels 
were not associated with PCBs concentration in case of fish 
samples. The amount of PCBs found in the biota samples are 
demonstrably not correlated with the sediment PCBs content.

For benthic fauna there are three possible pathways of 
contaminant exposure: direct contact with sediment, organic 
and inorganic sediment ingestion, and contact with interstitial 
or overlying water [67]. According to Quensen et al. [68] and 
MacDonald et al. [69] differences in congener composition 
in the aquatic systems may be attributed to a decline in the 
proportion of less chlorinated PCBs that are more susceptible 
to losses through volatilization, sedimentation and possibly 
microbial degradation.

In the present study some variations in congener composition 
were observed between all studied samples. Generally PCBs 
152, 44, 138 and 52 were the congeners that contributed more 
to total PCBs in the studied species, PCB28 was not detected 
in any of the samples, along with many other congeners, while 
PCB180 was detected in almost all samples except Paphia 
textile. PCB 180 is assumed to be the most persistent congeners 
due to its high chlorination level [70]. PCB 118 was the only 
dioxin- like PCB detected congener. The mean concentrations 
of PCB 118 were in the order of water: (0 ng/ml), Venerupis 
pullastra (1.5 ng/g), Tilapia zilli (2.5 ng/g), Mugil cephalus (2.7 
ng/g) and Paphia textile (3.5 ng/g), while sediment presented a 
higher value of 9.6 ng/g., with a ratio not exceeding 4.5-24% of 
Σ11 PCBs at the different samples. 

The presence and distribution of PCBs in edible fish is an 
important issue, not only for public health, but also from an 
ecological perspective. Sediment is a significant repository of 
environmental contaminants. Sediment analysis constitutes 
a tool of especial importance in aquatic ecosystem quality 
assessment, since sediments can reflect long-term contamination 
levels. Moreover, sediment is acting as reservoirs of all 
diversity of persistent pollutants and thus a source of potential 
contamination to benthic organisms [71,72]. The mean PCBs 
concentration (Σ11PCBs) reported for sediment in this study 
(49.8ng/g dry w) is much higher than PCBs concentration 
(Σ12 PCBs) of 2.6 ng/g dw for sediments of Montego estuary, 
Portugal [73].

Residues of PCBs in water samples reported in this study 
(Table 5) (16.1 ng/ml), are much higher than level (Σ PCB 5.2 
to 190.8 ng/L) detected for surface water samples from Czech 
Republic [74], and water samples collected from the Houston 
Ship Channel in USA (0.49 to 12.49 ng/L for 209 PCB) [20], 
and PCB levels in surface water from Tonghui River of Beijing, 
China (31.58 to 344.9 ng/l) [52]. 

According to the USEPA guideline, the concentration of PCBs 
should be less than 14 ng/l for water, in order to be considered 
safe for aquatic and human health. Hence, the surface water of 
Temsah Lake is considered rather polluted by PCBs (ΣPCBs 
ranged from3.7 to 28.2 ng/ml) and would need the introduction 
of abatement measures to cut down the pollution level and 
improve its quality.

On the other hand, Σ 11 PCBs detected in the sediment of the 
lake (49.8 ng/g dry w) was comparable to sum of PCB 28, 52, 
101, 118, 138, 153, and 180 that detected in the sediment of 
Brno reservoir, Czech Republic that ranged from <LOQ to 77.6 
μg /kg dw [75].

In the present study the mean value of ∑ PCBs varied between of 
27.8-44.7 ng/g wet weight, which is below the limit established 
for the muscle meat of fish and fishery products (75 ng/g wet 
weight) for Σ PCB28, PCB52, PCB101, PCB138, PCB153 and 
PCB180 set by European Commission [76] No. 1259/2011. 
Hence, there is no danger for human consuming fish and 
bivalves species from Lake Temsah.

Canadian sediment quality guidelines [77] can be used to assess 
the degree to which adverse biological effects are likely to 
occur as a consequence of exposure to PCBs in sediments. The 
present study revealed that concentrations detected in sediment 
samples from Temsah Lake (49.8 ng/g) exceeded the PCB 
threshold effect level (TEL), i.e. 21.5 ng/g, but were below PCB 
probable effect level (PEL), (189 ng/g.) Therefore, sediment 
of the Temsah Lake may be considered as a highly stressful 
environment, since PCB toxic effects may occur on benthic 
biota of the lake.

Organochlorine pesticides residues level
Thirteen OCP compounds were detected in the aquatic biota, 
water and sediment samples from Temsah Lake (Table 4). For 
biota, Σ OCPs residues ranged from 38.8 to 83.5 (ng/g). Water 
showed the lowest level of organochlorine pesticides residues 
(Σ OCPs 1.31 ng/ml), while sediment contained the highest, i.e. 
156.8ng/g. This may indicate the effective removal of OCPs 
from water to sediments.

DDE was the dominant OCPs in biota and water samples. DDE 
also contributes significantly to the total OCPs (tilapia 16.7%, 
mullet 49.7, Paphia textile 46.5%, Venerupis pullastra 43%, and 
water 29%). While dieldrin was the dominant OCPs in sediment 
with a contribution of 31.9% of total OCPs residues. DDT was 
detected only in tilapia and water at concentration of 1.6 ng/g 
and 0.04ng/ml respectively. Methoxychlor was detected only in 
water with mean value of 0.24 ng/ml.

p,p-DDT was detected in water samples with concentration 
ranged from 0.01 ng/ml to 0.07 ng/ml and in tilapia samples 
with concentrations ranging from ND to 3.2 ng/g, suggesting 
recent input of this compound to the lake, Storm water might 
have carried DDTs from several sources such as agricultural 
lands or municipal areas which are sprayed for hygiene purposes 
and vector control.

DDT was widely used in Egypt on a variety of agricultural 
crops and for the control of disease vectors. Although its usage 
was banned in Egypt since 1970s, its detection along with its 
breakdown products, in sediments is expected because of its 
stability and long persistence estimated to be in the range of 
10-20 years [78].

In general, the OCPs concentrations reported in biota samples 
in this study are far below FDA Regulatory Action Levels 
(Regulatory Values) of 0.3 μg/g in Fish for OCPs (Endrin, 
Dieldrin, Heptachlor, aldrin, heptchlor epoxide, chlordane 
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and HCH) and 5 μg/g for total DDT in freshwater and marine 
fish [79].

The ratios of the parent DDT to its metabolites provide useful 
information on the identification of pollution source in biota, 
water and sediment. Concentrations reported in this study 
for all samples showed a common concentration sequence of 
DDE>DDD>DDT. In the present study, the concentration of 
DDE and DDD are much higher than that of DDT in all samples. 
This in turn would indicate a long-term biotransformation 
process whereby DDT is converted to DDE and DDD. 
Moreover, this would also indicate that there is no fresh input of 
DDT into the lake [80].

BAF and BSAF
The bioaccumulation factor is used to describe the process by 
which an organism absorbs contaminants from its environment 
and food [81]. Another factor frequently used to evaluate 
contaminant accumulation is the BSAF. Together, the BAF and 
BSAF represent bioaccumulation from dissolved and suspended 
contaminants in the water.

BAF and BSAF are commonly used as an index of the extent 
of bioaccumulation at a particular site because they represent 
the ratio of the chemical concentration in the organism to the 
concentration in the environmental medium (i.e., tissue residue 
divided by the sediment or water). In some cases like the present 
study, BSAF are normalized to site-specific conditions such as 
lipid content of the organism and the organic matter content of 
sediment. Organic matter content is particularly relevant in the 
context of accumulation of hydrophobic organic contaminants 
since it represents a factor directly influencing the concentration 
of PCBs in bottom sediments. Tomza et al. [7] reported that 
sediments rich in organic matter (muddy deposits) accumulated 
more PCBs than sandy ones. The BSAF were calculated 
by dividing lipid-normalized chemical concentration in the 
organism by that in the sediment on an organic carbon basis 
(mean value was used).

The organic carbon content reported in this study for sediment 
samples was 0.03 g/g, and the biota fat content were 0.06, 0.03, 
0.02 and 0.01 (g/g) for mullet, tilapia, Venerupis pullastra and 
Paphia textile respectively. 

Table 1 shows the bioaccumulation factor (BAF) for the 
contaminants that have been reported in biota and water. BAF 
for five PCBs congeners in fish and bivalves are present in Table 
1. BAF of PCBs ranged from 0.1 to 12.9. The congener PCB152 
had the highest BAF value among all studied biota. PCBs are 
very lipophilic and in many studies higher lipid content is 
associated with higher PCB concentration [65,66]. However, in 
the current study lipid levels were not correlated with pollutants 
concentration.

On the other hand out of the 14 measured PAHs, only benzo(b) 
fluoranthene and pyrene congeners were reported in water 
samples as well as in biota samples. PAHs are one of the major 
categories of pollutants entering the aquatic environment and 
finally accumulating in the sediments. The BAF reported for 
these PAHs congeners was the lowest in this study, ranging 
from 0.1 to 0.2 for fish and from 0.2 to 1.2 for bivalves. The 

bioaccumulation factors of PAHs in different species vary 
greatly [82,83]. Species that do not metabolize PAH at all or to 
only a limited extent, such as algae, oligochaetes and mollusks, 
and the more primitive invertebrates (protozoans, porifers and 
cnidaria) accumulate high concentrations of PAHs, as would be 
expected from their high log Kow values. However, organisms 
that metabolize PAHs such as fish and higher invertebrates, 
accumulate little or no PAHs (Ololade and Lajide 2010) [85]. 
PAHs accumulate in animals located at lower levels of the food 
chain because they are poorly metabolized in these species. For 
fish and bivalves, BAF of OCPs (23.7-560) were extremely 
greater than those of PCBs (0.1-12.9) and PAHs (0.1-1.2). 
Heptchlor epoxide that poses potential human health risks had 
the highest BAF within this study with a value of (560).

BSAF values of OCPs individual compounds in two fish species 
were less than 1, ranging from 0.33 to 0.75 while BSAF values 
for bivalves were higher than 1, ranging between 0.19 - 5.57. 
Generally BSAF reported for p,p-DDD and p,p-DDE in in bivalve 
Paphia textile had the highest BSAF in this study (Table 2). 

The present BSAF for the sum of five OCPs reported for fish in 
this study are many times lower than the national-scale value 
reported for fish in USA (0.7-8.6 for eight different OCPs) 
[84] and the range reported for feral eel (Anguilla anguilla) 
(approximately1-70) by Van der Oost et al. [81].

BSAF values reported for PAHs were higher in bivalves than 
fish samples, with only three congeners (Naphthalene, Flourene 
and pyrene) accumulated in the studied biota BSAF for fish 
and bivalves were in the range of 0.16-4.47, with pyrene as 
the dominant accumulated congener. Eight PCBs congeners 
were detected in biota and sediment as well. The BSAF values 
for PCBs congeners ranged from 0.11 to 4.53 in fish samples. 
PCB105 and PCB138 were not accumulated in mullet fish. The 
BSAF values in the present study were lower than the fish-
sediment ratios obtained from the Pearl River Estuary [85].

According to Corl, [86] bioaccumulation is rather a process 
that merits considerable attention because of its bearing 
on environmental risk assessment of chemical pollutants. 
Occurrence of bioaccumulative chemicals is not necessarily a 
proof of ecological risk, but may indicate that the need to assess 
the ecological evaluation of these accumulative contaminants 
[87-90].

Conclusions
As far as the authors are aware, the present study is the first to 
shed some light on the residue level of some priority pollutants 
beside their bioaccumulation profile in the Temsah Lake. The 
concentrations of all studied pollutants in biota samples, i.e. fish 
and bivalves were consistently lower than that detected in their 
surrounding sediment.

The results obtained in this study demonstrate that the levels 
of organic pollutants in fish taken from the Temsah Lake were 
relatively high, however, they were lower than the pollutants 
levels published in earlier studies. This in turn would reflect 
efforts exerted by regulatory bodies to improve the quality of 
Lake Ecosystem. Nevertheless, continuous efforts should be 
put on place in order to maintain a manageable level of these 
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organic pollutants. By comparing the present study results with 
the US SQGs values, probability of ecological risk associated 
with these PAHs is not expected; however further attention 
should be paid for naphthalene and flourene congeners since 
their concentrations exceeded their corresponding ERLs 
value.

The levels of PAHs, OCPs and PCBs that reported in the present 
study for the Temsah lake reflects the remarkable improvements 
by the government and the Egyptian Environmental Affaires 
Agency (EEAA) to save the lake ecosystem. Some actions and 
legal measures toward the reduction of contaminants use have 
been taken to decrease the contamination load for the lake [49]. 
Finally the present study provides useful information to the 
local administration about contaminants level in lake ecosystem 
[90-110].
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