
J Neurol Neurorehabil Res 2016 Volume 1 Issue 27

http://www.alliedacademies.org/neurology-and-neurorehabilitation-research/Mini Review

Programmed cell death dynamics during hyperglycemia and ischemic brain 
injuries.

Timothy J LaRocca*
Albany College of Pharmacy and Health Sciences, USA

Introduction
Ischemic injuries of the brain, including stroke and neonatal 
hypoxia-ischemia, are characterized by widespread cell death 
of neurons in the affected tissue [1-3]. The cell death that occurs 
includes two related programmed cell death (PCD) pathways, 
apoptosis and necroptosis [2,4,5]. These pathways overlap in 
their initial signaling steps but diverge to produce two very 
different outcomes. In general, cell death by apoptosis is 
largely non-inflammatory while necroptosis stimulates robust 
inflammation [6]. Both pathways and their roles in ischemic 
brain injuries are discussed below. 

Apoptosis and Ischemic Brain Injury
Apoptosis may be activated by the extrinsic or intrinsic 
pathways [7,8]. In the extrinsic pathway, apoptosis is induced 
by cytokines of the TNF family after they bind to their cognate 
receptors on the cell surface. These cytokines include TNF-α, 
Fas ligand (FasL), and TNF-related apoptosis-inducing ligand 
(TRAIL). Following receptor binding, cytosolic signaling 
complexes are formed which function to set apoptosis signaling 
in motion. These cytosolic complexes differ slightly depending 
on the receptor: ligand stimulus but each lead to many of the 
same signaling events [7,8]. The best studied, and therefore 
best understood, extrinsic pathway is that induced by TNF-α 
[9]. The interaction of TNF-α with its receptor results in the 
formation of complex I, a membrane-proximal complex bound 
to the cytosolic portion of TNF receptor [8,9]. Complex I 
includes TNF receptor-associated death domain (TRADD), 
cellular inhibitors of apoptosis 1 and 2 (cIAP1/2), and receptor-
interacting protein kinase 1 (RIP1) [9,10]. Within this complex, 
RIP1 is in a polyubiquitylated state in which it serves as the 
docking site for transforming growth factor beta activated kinase 
1 (TAK1) in the TNF-α survival pathway [11,12]. However, 
once RIP1 is deubiquitylated, usually by cylindromatosis 
protein (CYLD), this complex is internalized further into the 
cell [13,14]. Following this, Fas-associated death domain 
(FADD) and inactive caspase-8 join resulting in the formation 

of complex II [7,10]. The presence of several molecules of 
caspase-8 in complex II leads to proximity activation of these 
signaling proteins. Once activated, caspase-8 cleaves and 
activates executioner caspases [including caspase-3,6,7] which 
go on to cleave multiple substrates resulting in apoptotic cell 
death [7,10]. 

Intrinsic apoptosis may be activated on its own in response 
to internal cellular stress or may be activated downstream of 
extrinsic apoptosis [7,15]. In either case, BH3-only proteins 
(which include Bad, Bid, and Bim) are activated to inhibit the 
anti-apoptotic Bcl-2 proteins [16]. This leads to the formation of 
channels in the outer membrane of the mitochondria by BH123 
proteins. The channels formed by BH123 proteins allow for 
the release of cytochrome c (cyt c) into the cytosol [16]. Once 
released from the mitochondria, cyt c binds apoptosis protease-
activating factor-1 (Apaf1) [7,10,16]. Several cyt c-bound 
Apaf1 molecules oligomerize via their caspase recruitment 
domains (CARDs) [7,10]. Subsequently, inactive caspase-9 
molecules bind the oligomerized Apaf1 molecules via their 
CARD domains forming the apoptosome complex. Within 
the apoptosome, several molecules of caspase-9 induce self-
cleavage due to proximity activation. Similar to caspase-8, 
once caspase-9 is activated it cleaves and activates executioner 
caspases which continue the signaling that leads to apoptotic 
cell death [7,10]. 

Whether induced by the extrinsic pathway, intrinsic pathway, 
or both, the outcome of cell death by apoptosis is largely 
non-inflammatory [6]. This is due to the controlled cleavage 
and packaging of cellular components during the execution 
phase of apoptosis [8,10,17]. In this phase, caspase-3 cleaves 
and inactivates the inhibitor of caspase-activated DNase 
(ICAD) resulting in DNA fragmentation [8,10]. Executioner 
caspases also cleave lamins A, B, and C which induces nuclear 
fragmentation. Additionally, the Golgi, ER, and mitochondria 
are similarly subject to fragmentation [8,10]. Cytoskeletal 
integrity is lost due the cleavage of gelosin (an actin nucleating 
factor) by caspases [10]. Not only does this prevent actin 
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polymerization but gelosin fragments also cleave polymerized 
actin filaments in the presence of calcium [10]. Caspases also 
activate membrane scramblases, the major of which is Xkr8, 
which leads to the externalization of phosphatidylserine (PS) 
[17,18]. All of these events lead to the breakdown of the cell 
into fragments called apoptotic bodies which display PS on 
their surface [8,10]. The PS on apoptotic bodies is recognized 
by macrophages and the cells are normally removed before any 
cellular contents are released resulting in the non-inflammatory 
phenotype [8,10].

Apoptosis is active following ischemia-reperfusion of the brain 
and is responsible for areas of cell death following this injury 
[2-4]. A minor percentage of cells lost in the ischemic core die 
via apoptosis [19]. However, in tissue areas surrounding the 
ischemic core, apoptosis is prevalent. Apoptosis is noticeably 
prominent in the region just outside of the ischemic core, 
referred to as the periinfarct region. Additionally, there is 
increased expression of FasL in these regions. This could 
suggest that FasL instigates post-ischemic apoptosis of the 
periinfarct region, prolonging the tissue damage induced by 
ischemia. The cells in these regions have been measured as 
actively undergoing apoptosis shortly after the ischemic event. 
That these cells have not undergone complete demise raises the 
possibility that tissue damage may be limited post-injury by the 
inhibition of apoptosis [19]. Such therapy could prove valuable 
in the recovery of affected individuals.

Necroptosis and Ischemic Brain Injury
Necroptosis, or programmed necrosis, is a major PCD pathway 
that occurs across diverse cell types including neurons, 
leukocytes, and erythrocytes among many other cells [20-22]. 
Necroptosis shares identical steps with extrinsic apoptosis 
during its initiation phase [20,23]. In fact, the very same stimuli, 
cytokines of the TNF family, induce both extrinsic apoptosis 
and necroptosis. As with extrinsic apoptosis, the best-studied 
stimulus of necroptosis is TNF-α. Following receptor binding, 
complex I forms identically to that in extrinsic apoptosis [20,23]. 
As with extrinsic apoptosis, RIP1 must be deubiquitylated by 
CYLD for complex I to be further internalized into the cell [13]. 
Also identical to extrinsic apoptosis, complex II forms following 
this with the recruitment of FADD and inactive caspase-8 
[20,23]. At this point, depending on the conditions, the balance 
may tip toward apoptosis or necroptosis. In the case of the 
balance shifting to apoptosis, caspase-8 acts on downstream 
caspases to induce the signaling of non-inflammatory apoptosis, 
as described above [7,10]. Once activated, caspase-8 also 
cleaves RIP1 and a related kinase, RIP3, and inactivates them 
[24-26]. In cases where caspase-8 activity is compromised or 
RIP1 activity outweighs caspase-8, the balance is shifted to 
necroptosis [20,23]. This begins with the phosphorylation of 
RIP1 which is followed by the recruitment and phosphorylation 
of RIP3 and mixed lineage kinase-domain like (MLKL) protein 
[23,27]. The inclusion of all three of these phosphokinases results 
in a cytosolic complex referred to as the necrosome, which is 
the central signaling complex of necroptosis [20,23]. This is 
followed by the activation of a number of downstream effectors 
which results in the outcome of cellular lysis by necroptosis, 
which is highly inflammatory [28]. A key event downstream 
of necrosome formation is the translocation of MLKL to the 
membrane [29-31]. Once this occurs, MLKL oligomerizes 

into a membrane pore, contributing to the increased membrane 
permeability that is characteristic of necroptosis [29-31]. It 
should not be overlooked, however, that as caspase-8 cleaves 
and inactivates RIP1 and RIP [24,25], it antagonizes necroptosis 
while activating apoptosis [20,23]. 

Downstream of the necrosome, cellular lysis by necroptosis 
may be influenced by a number of effectors. These include 
Ca2+-activated calpains, sphingomyelinase-produced ceramide, 
advanced glycation end products (AGEs), and reactive oxygen 
species (ROS) [20,23]. By no means do all of these effectors 
need to be involved in every case of necroptosis. In fact, the 
effectors involved seem to differ from cell type to cell type. In 
most cases of necroptosis, however, AGEs and ROS are central 
to cell death [20,32,33]. Both of these are toxic byproducts of 
metabolism [34-36]. AGEs are formed due to the synthesis of 
the toxic derivative, methylglyoxal, from the fragmentation 
of glyceraldehyde-3-phosphate and dihydroxyacetone 
phosphate (DHAP) during glycolysis [34,35]. The production 
of ROS is predominantly due to premature release of partially 
reduced oxygen from the electron transport chain of oxidative 
phosphorylation [36]. Another major source of ROS is the 
NADPH oxidase (NOX) family of proteins, which are of wide 
tissue distribution [37]. As oxidative phosphorylation depends 
on the metabolism of pyruvate to NADH in the citric acid cycle 
[36], glycolysis is viewed as a regulator of ROS production. 
Similarly, NADPH utilized by NOX is produced via breakdown 
of glucose-6-phosphate, the product of the first step of glycolysis, 
in the pentose phosphate pathway [37] further underscoring a 
critical role for glycolysis in the production of ROS. Necroptosis 
results in AGE formation as RIP1 stimulates glycolysis via 
glycogen phosphorylase (PYGL) [20]. As stated, the stimulation 
of glycolysis will consequently lead to stimulation of oxidative 
phosphorylation and the production of ROS [36], thereby linking 
induction of necroptosis to these toxic molecules. RIP1, RIP3, 
and MLKL have been linked to ROS production in other, more 
direct ways, as well. RIP3 and MLKL activate the mitochondrial 
protein phosphoglycerate mutase 5 (PGAM5) and recruit it to 
the necrosome [38,39]. Following its phosphorylation, PGAM5 
dephosphorylates and activates the mitochondrial fission 
protein Drp1 [39]. This causes mitochondrial fission and ROS 
production [39]. Additionally, MLKL polymerizes pores in the 
mitochondrial membrane which promotes the release of ROS 
into the cytosol [40]. RIP1 translocates to the mitochondria and 
can modulate ADP/ATP exchange and ROS production during 
necroptosis as well [41]. RIP1 has also been shown to increase 
the expression of peroxisome proliferator-activated receptor c 
coactivator-1α (PGC-1α) [42]. This is of significance as PGC-
1α stimulates the production metabolic and mitochondrial genes 
which, consequently, lead to ROS production [42].

Necroptosis is responsible for the majority of cell death in 
ischemia-reperfusion injury of the brain, kidneys, and heart and 
has been particularly well-studied in ischemic brain injuries [5]. 
Inhibition of RIP1 with the pharmacologic inhibitor, necrostatin-1 
(nec-1), drastically reduces infarct size in murine stroke models 
of cerebral ischemia-reperfusion injury [43] and reduces cell 
death and pathology following traumatic brain injury in mice 
[44]. Also, RIP1 inhibition prevents damage of brain tissue due 
to neonatal hypoxia-ischemia [45,46]. The protective effect of 
nec-1 in neonatal hypoxia-ischemia is in part due to prevention of 
mitochondrial dysfunction in neurons and astrocytes [47]. That 



LaRocca

9 J Neurol Neurorehabil Res 2016 Volume 1 Issue 2

nec-1 protects cells and tissues of the brain from these necrotic 
injuries indicates that RIP1-dependent necroptosis is central to 
the pathology of ischemic injuries of the brain. Additionally, 
necroptosis is a highly inflammatory PCD pathway as a result 
of its cellular lysis endpoint [20,28]. Therefore, it is linked to 
the production of inflammation in a number of injuries which 
can lead to bystander cell death exacerbating tissue damage 
[48]. This may well be the case in ischemic brain injuries as the 
production of pro-inflammatory cytokines drives the pathology 
of these conditions [49]. The connection between necroptosis, 
inflammation, and pathology needs to be investigated further 
in the context of ischemic brain injuries in order to establish 
a solid connection between the exacerbation of these injuries 
and necroptosis-produced inflammation. Lending support to the 
potential role of necroptosis-induced inflammation in bystander 
damage during injuries of the central nervous system is the fact 
that necroptosis of microglia leads to astrocyte death in spinal 
cord injury [50,51].

Hyperglycemia and the Exacerbation of Ischemic 
Brain Injury
As described above, glucose (and its metabolism) has a central 
role in driving necroptosis as this is how toxic AGEs and ROS 
are produced during this PCD [20,23,52]. Inevitably, this leads 
one to question how the situation is affected in conditions of 
high levels of cellular glucose, as in hyperglycemia and diabetes. 
This has been addressed at the biochemical level recently 
in vitro as well as in an in vivo model of neonatal cerebral 
hypoxia-ischemia [52]. In three different cell types, necroptotic 
cell death was upregulated in hyperglycemic conditions in 
vitro in response to three different stimuli of necroptosis, 
including bacterial pore-forming toxins, TNF-α, and FasL. 
It was confirmed that the hyperglycemic upregulation of cell 
death was indeed due to necroptosis as inhibition of RIP1, with 
the pharmacologic inhibitor necrostatin-1s (nec-1s) or siRNA, 
prevented such exacerbation. The hyperglycemic upregulation 
of necroptosis depended on glycolysis as the non-metabolizable 
2-deoxy-D-glucose prevented it while the addition of 
exogenous pyruvate restored this exacerbation. The inhibition 
of AGEs and ROS blunted the upregulation of necroptosis in 
hyperglycemic conditions which suggested that these toxic 
molecules are at least partially involved in this phenomenon. 
Unexpectedly, total protein levels of RIP1, RIP3, and MLKL 
increased robustly during the hyperglycemic upregulation of 
necroptosis. Currently, it is not known how the levels of these 
proteins increased but evidence points to this being a post-
translational event as mRNA transcript levels were unaffected 
and as the ribosome inhibitor cycloheximide was used in these 
experiments. It is clear, however, that increased levels of these 
kinases could account for the increase in necroptosis during 
hyperglycemia [52]. 

While hyperglycemic conditions upregulated necroptosis, the 
same was not true of extrinsic apoptosis or eryptosis (a PCD 
unique to erythrocytes) [52]. This showed that the hyperglycemic 
exacerbation of extrinsic cell death was specific to necroptosis. 
In fact, in the case of extrinsic apoptosis, which was induced 
by the exact same stimuli as necroptosis in this study (TNF-α 
and FasL), hyperglycemia inhibited this PCD. Interestingly, 
while hyperglycaemic conditions inhibited caspase-dependent 
extrinsic apoptosis, cell death itself was not inhibited. In other 

words, significant levels of caspase-independent cell death 
remained under hyperglycemic conditions [52]. This raises the 
possibility that hyperglycaemia may potentiate a shift from 
apoptosis to necroptosis. This would be significant as it would 
represent a shift from non-inflammatory to inflammatory cell 
death. More research is necessary to fully establish whether 
or not hyperglycemia truly shifts apoptosis to necroptosis, 
however. Lending support to this argument, is the fact that total 
protein levels of RIP1, RIP3, and MLKL increase robustly in 
hyperglycemic conditions following treatment of cells with the 
apoptotic stimulus, TNF-α [52].

In addition to demonstrating the upregulation of necroptosis 
in hyperglycemic conditions at the cellular level, this work 
connected this phenomenon to neonatal hypoxia-ischemia 
in the brain [52]. Using a mouse model of neonatal brain 
hypoxia-ischemia, this work showed that cerebral infarcts were 
exacerbated significantly in hyperglycemic mice. Importantly, 
the exacerbation of cerebral infarcts in hyperglycemic mice 
was prevented completely by the administration of the RIP1 
inhibitor, nec-1s [52]. This is significant as it clearly connects 
the hyperglycemic exacerbation of neonatal brain hypoxia-
ischemia with increased RIP1-dependent necroptosis. That 
hyperglycemic conditions upregulate necroptosis at the 
cellular level certainly provides an attractive explanation for 
the exacerbation of this injury during hyperglycemia [52]. It is 
also possible that, in addition to exacerbated necroptosis, the 
apoptosis that occurs in this injury [2-4] shifts to necroptosis as 
a result of hyperglycemia. It is tempting to speculate that this 
may play a role as inhibition of RIP1 resulted in a significant 
improvement in tissue damage so much so that brain tissue 
from hyperglycemic mice that received nec-1s were of a 
much smaller infarct size than even normal mice that received 
hypoxia-ischemia injury [52].

Hypotheses for the Mechanism of Hyperglycemic 
Exacerbation of Ischemic Brain Injury via 
Necroptosis
Exacerbation of ischemic brain injury due to increased 
necroptosis and a possible shift from apoptosis to necroptosis 
as a result of hyperglycemia are novel concepts. The initial 
evidence provided in this recent work highlights a role for 
increased necroptosis in the exacerbation of these injuries [52], 
however, more work must be done on this topic. In particular, 
further work must be conducted to elucidate the underlying 
mechanisms of the hyperglycemic upregulation of necroptosis. 
Additionally, more investigation must be completed to 
determine whether or not hyperglycemia promotes a shift from 
apoptosis to necroptosis. However, much is known about the 
mechanisms of necroptosis and apoptosis already and this 
information can provide us with some possibilities regarding 
the mechanisms of these phenomena. At this point, this is 
speculation but can provide some logical starting points for this 
exciting avenue of research. Regarding the increase in protein 
levels of RIP1, RIP3, and MLKL during the hyperglycemic 
upregulation of necroptosis [52], it is possible that this may 
be due to increased necrosome formation. The necrosome has 
been shown to be of an amyloid nature, therefore, increased 
formation of this complex could protect these proteins from 
degradation thereby resulting in their increased levels [53]. 
Additionally, recent evidence has shown that RIP1, RIP3, 
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therapeutic approaches to combat such exacerbation. Moreover, 
the study of hyperglycemia as a specific condition in which PCD 
dynamics shift can uncover important molecular switches that 
govern the major PCD pathways. This knowledge can then be 
applied to other situations to better understand precise cell death 
responses. This is an exciting connection but more work must 
be done to elucidate the underlying cellular mechanisms that 
are involved and to truly establish hyperglycemia as a condition 
in which the balance of PCD shifts from non-inflammatory 
apoptosis to inflammatory necroptosis.
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