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Introduction
Motivation for the consideration of statistics constructed 
from samples with random sizes
In most cases related to the analysis of experimental data, the 
number of random factors which influence observed objects 
is random and changes from one observation to anorher. Due 
to the stochastic character of the intensities of information 
flows in high performance information systems, the size of 
data available for the statistical analysis can be often regarded 
as random. In classical problems of mathematical statistics, 
the size of the available sample, i. e., the number of available 
observations, is traditionally assumed to be deterministic. In 
the asymptotic settings it plays the role of infinitely increasing 
known parameter. At the same time, in practice very often the 
data to be analyzed is collected or registered during a certain 
period of time and the flow of informative events each of 
which brings a next observation forms a random point process. 
Therefore, the number of available observations is unknown 
till the end of the process of their registration and also must 
be treated as a (random) observation. For example, this is so in 
insurance statistics where during different accounting periods 
different numbers of insurance events (insurance claims or 
insurance contracts) occur and in high performance information 
systems where due to the stochastic character of the intensities 
of information flows, the size of data available for the statistical 
analysis can be often regarded as random. Say, the statistical 

algorithms applied in high-frequency financial applications 
must take into consideration that the number of events in a 
limit order book during a time unit essentially depends on the 
intensity of order flows. Moreover, contemporary statistical 
procedures of insurance and financial mathematics do take 
this circumstance into consideration as one of possible ways 
of dealing with heavy tails. However, in other fields such as 
medical statistics or quality control this approach has not 
become conventional yet although the number of patients with 
a certain disease varies from month to month due to seasonal 
factors or from year to year due to some epidemic reasons and 
the number of failed items varies from lot to lot. In these cases 
the number of available observations as well as the observations 
themselves are unknown beforehand and should be treated as 
random to avoid underestimation of risks or error probabilities.

In asymptotic settings, statistics constructed from samples 
with random sizes are special cases of random sequences with 
random indices. The randomness of indices usually leads to that 
the limit distributions for the corresponding random sequences 
are heavy-tailed even in the situations where the distributions 
of non-randomly indexed random sequences are asymptotically 
normal [1-3]. For example, if a statistic which is asymptotically 
normal in the traditional sense, is constructed on the basis of a 
sample with random size having negative binomial distribution, 
then instead of the expected normal law, the Student distribution 
with power-type decreasing heavy tails appears as an asymptotic 
law for this statistic [1,4].

Due to the stochastic character of the intensities of information flows in high performance 
information systems, the size of data available for the statistical analysis can be often regarded 
as random. The purpose of this paper is to present some means for the comparison of the quality 
of estimators constructed from samples with random sizes with that of estimators constructed 
from samples with non-random sizes. As this means it is proposed to use the deficiency. It can 
be an illustrative characteristic of a possible loss of the accuracy of statistical inference if a 
random-size-sample is erroneously regarded as a sample with non-random size. It is heuristically 
shown that if the asymptotic distribution of the sample size normalized by its expectation is not 
degenerate, then the deficiency of a statistic constructed from a sample with random size whose 
expectation equals n with respect to the same statistic constructed as if the sample size was 
non-random and equal to n, grows almost linearly as n grows. A non-trivial behavior of the 
deficiency is possible only if the random sample size is asymptotically degenerate. This is the case 
considered in the paper where the deficiencies of statistics constructed from samples whose sizes 
have the Poisson, binomial and special three-point distributions, respectively, are considered. 
Some basic results dealing with some properties of estimators based on the samples with random 
sizes are also presented.
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At the same time, according to the conventional logics of the 
statistical analysis, the distributions of the statistics (estimators, 
tests, etc.) to be used for the statistical inference should be known 
before the actual sample is observed in order to calculate critical 
values or thresholds. As a rule, asymptotic approximations by 
limit distributions of statistics are used instead of the exact 
distributions because the former are considerably easier 
computable than the latter. As this is so, in limit theorems of 
probability theory and mathematical statistics the centering and 
normalization of random variables are used to obtain non-trivial 
asymptotic distributions. It should be especially noted that to 
obtain reasonable approximation to the distribution of the 
basic random variables, both centering and normalizing values 
should be non-random. Otherwise the approximate distribution 
becomes random itself and, say, the problem of evaluation 
of quantiles required for the calculation of critical values or 
confidence intervals becomes senseless.

Throughout the paper we use conventional notation:   is the 
set of real numbers,   is the set of natural numbers, h(n) ~ f(n), 

n → ∞ if and only if ( ) / ( ) = 1limn h n f n→∞ . The symbols =
d

, ⇒
and 



 denote the coincidence of distributions, convergence in 
distribution and the end of the proof, respectively.

Consider a family of probability measures = { : }Pθ θ ∈Θ  each 
of which is defined on a measurable space ( , )Ω F . Consider 
a sequence of random variables (r.v.’s) X1, X2,… defined on a 
measurable space ( , )Ω F . Everywhere in what follows consider 
the random variables X1, X2,… to be independent and identically 
distributed (i.i.d) with common distribution Pθ . Let N1, N2,… 
be a sequence of nonnegative integer random variables with 
common distribution P defined on the same measurable space 
so that for each n ≥ 1 the random variable Nn is independent of 
the sequence X1, X2,… with respect to any measure Pθ  from  . 
A random sequence N1, N2,… ( Ni with distribution P, i = 1, 2,…) 
is said to be infinitely increasing (Nn → ∞) in probability P, if 
P (Nn ≤ M) → 0 as n → ∞ for any M ϵ (0, ∞). For n ≥ 1, let Tn 
= Tn (X1,…, Xn) be a statistic, that is, a measurable function of 
the r.v.’s X1,…, Xn. For each n ≥ 1 define the r.v. TNn by letting:

 ( )( ) 1 ( )( ) = ( ), , ( )N N Nn n n
T T X Xω ωω ω ω

for every elementary outcome ω ϵ Ω. Assume that for each θ ϵ 
Θ there exists:

 ( ),nE T gθ θ≡

where ,nE Eθ θ≡  is the expectation w.r.t. distribution ,nP Pθ θ≡  
of Tn. We will say that the statistic Tn is asymptotically normal, 

 2 2( ( ), ( )), ( ) > 0, ,nT N g nθ σ θ σ θ →∞

if 

( )( )( ( )) < ( ), (1.1)nP n T g x x nθ σ θ θ− ⇒Φ →∞

for each θ ϵ Θ.

The following statement describes the change of the limit law 
of an asymptotically normal statistic when the sample size is 
replaced by a r.v. (Theorem 3.3.2) [5].

Lemma 1.1.  Assume that Nn → ∞ in probability P as n → ∞. 
Let the statistic Tn be asymptotically normal in the sense of 

(1.1) . Then a distribution function ( )F x  such that 

 ( )( )( ( )) < ( ), ,Nn
P n T g x F x nθ σ θ θ− ⇒ →∞

exists if and only if there exists a distribution function ( )Q x  
satisfying the conditions (0) = 0Q , 

 
0

( ) = ( ) ( ), , ( < ) ( ), .nF x x y dQ y x P N nx Q x n
∞
Φ ∈ ⇒ →∞∫ 

The concept of deficiency
Before turning to the general case of statistics constructed from 
samples with random size, that is the main aim of the present 
paper, let us recall the notion of a deficiency of a statistical 
estimator for the traditional case where the sample size is non-
random [6].

Suppose that 1( , , )n nT X X  and 1( , , )n nT X X  are two 
competing estimators of g(θ), θ ϵ Θ based on n observations 
X1,…, Xn and let their expected squared errors (risk functions) 
be denoted by *( )nR θ  and ( )nR θ , respectively. An interesting 
quantitative comparison can be obtained by taking a viewpoint 
similar to that of the asymptotic relative efficiency (ARE) of 
estimators, and asking for the number m(n) of observations 
needed by estimator ( ) 1 ( )( , , )m n m nT X X  to match the performance 
of *

1( , , )n nT X X  (based on n observations). The asymptotic (as n 
→ ∞) comparison of the two estimators involves the comparison 
of m(n) with n, and this can be carried out in various ways. 
Although the difference m(n) - n seems to be a very natural 
quantity to examine, historically the ratio  n / m(n) was preferred 
by almost all authors in view of its simpler behavior. The first 
general investigation of m(n) - n was carried out by Hodges 
and Lehmann [5]. They name m(n) - n the deficiency of Tn with 
respect to *

nT  and denote it as:
 = ( ) .(1.2)nd m n n−
Suppose that for n → ∞, the ratio n / m(n) tends to a limit b, the 
asymptotic relative efficiency of Tn (X1,…, Xn) with respect to 

*
1( , , )n nT X X

. If 0 < b< 1, we have dn ~ (b-1 - 1) n and further 
asymptotic information about dn is not particularly revealing. 
On the other hand, if b=1, the asymptotic behavior of dn, which 
may now be varying from  o(1) to o(n), does provide important 
additional information.

If limn nd→∞  exists, it is called the asymptotic deficiency of Tn 
with respect to *

nT  and denoted d. At points where no confusion 
is likely, we shall simply call d the deficiency of Tn with respect 
to *

nT .

The deficiency of Tn relative to *
nT  will then indicate how many 

observations one loses by insisting on Tn, and thereby provides 
a basis for deciding whether or not the price is too high. If the 
risk functions of these two estimators are:
 2 * * 2( ) = ( ( )) , ( ) = ( ( )) ,n n n nR E T g R E T gθ θθ θ θ θ− −

then, by definition, dn(θ) = dn = m(n) - n, for each n, may be 
found from
 *

( )( ) = ( ).(1.3)n m nR Rθ θ

In order to solve (1.3), m(n) has to be treated as a continuous 
variable. This can be done in a satisfactory manner by defining 

( ) ( )m nR θ  for non-integer m(n) as:

( ) [ ( )] [ ( )] 1( ) = (1 ( ) [ ( )]) ( ) ( ( ) [ ( )]) ( )m n m n m nR m n m n R m n m n Rθ θ θ+− + + −  [6].
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Generally *( )nR θ  and ( )nR θ  are not known exactly and we have to 
use approximations. Here these are obtained by observing that 

*( )nR θ  and ( )nR θ  will typically satisfy asymptotic expansions 
(a.e.) of the form:

 * ( )( ) ( )= ( ), (1.4)r s
n r r s

a bR o n
n n
θ θ − +

++ +

 ( )( ) ( )= ( ), (1.5)r s
n r r s

a cR o n
n n
θ θ − +

++ +

for certain a(θ), b(θ) and c(θ) not depending on n and certain 
constants r > 0, s > 0. The leading term in both expansions is the 
same in view of the fact that ARE is equal to one. From (1.2) - 
(1.5) is now easily follows that [6]

 (1 ) (1 )( ) ( )( ) = ( ).(1.6)
( )

s s
n

c bd n o n
r a
θ θθ

θ
− −−

+

Hence,

 ( ) ( )( ) = = , 0 < < 1,1 , = 1,1 0, > 1.(1.7)
( )

c bd d s mm s mm s
ra
θ θθ

θ
 −
±∞


A useful property of deficiencies is the following (transitivity): 
if a third estimator nT  is given, for which the risk ( )nR θ  also 
has an expansion of the form (1.5), the deficiency d of 

nT  with 
respect to *

nT  satisfies the relation  d = d1+ d2, where d1 is the 
deficiency of nT  with respect to Tn and d2 is the deficiency of Tn 
with respect to *

nT .

The situation where s = 1 seems to be the most interesting one. 
Hodges and Lehmann [6] demonstrate the use of deficiency in a 
number of simple examples for which this is the case (for testing 
problems see also [7-10]).

The purpose and structure of the paper
The purpose of this paper is to present some means for the 
comparison of the quality of estimators constructed from 
samples with random sizes with that of estimators constructed 
from samples with non-random sizes. As this means we propose 
to use the deficiency. It can be an illustrative characteristic of a 
possible loss of the accuracy of statistical inference if a random-
size-sample is erroneously regarded as a sample with non-
random size. The present paper develops the research started [3] 
and presents a number of applications of the deficiency concept 
in problems of point estimation in the case when the number of 
observations is random.

Section 2 contains main results. First, in Section 2.1 we 
heuristically show that if the d.f. ( )Q x  in Lemma 1.1 is not 
degenerate, then the deficiency of a statistic constructed from 
a sample with random size whose expectation equals n with 
respect to the same statistic constructed as if the sample size 
was non-random and equal to n, grows almost linearly as n 
grows. A non-trivial behavior of the deficiency is possible 
only if the random sample size is asymptotically degenerate. 
This is the case considered in Sections 2.3, 2.4 and 2.5 where 
the deficiencies of statistics constructed from samples whose 
sizes have the Poisson, binomial and special three-point 
distributions, respectively, are considered. Section 2.2 contains 
some preliminary basic results dealing with some properties of 
estimators based on the samples with random sizes. Sections 
3 - 5 contain results concerning deficiencies of asymptotic 
quantiles.

In this paper we focus on the case where the sample size is 
independent of the r.v.’s forming the sample. This assumption, 

first, is made for the sake of simplicity of the methods used 
to obtain the qualitative results. Second, in many applied 
problems this assumption does not contradict the essence of the 
problem. For example, this is so when the data is accumulated 
within a prescribed time interval (a month, a year, etc.), but 
the informative events form a stochastic flow. This situation 
is typical for financial and insurance practice or any other 
field of activities with accounting periods. Moreover, the 
independence of X1, X2,… is not crucial since basic Lemma 1.1 
can be proved without this assumption [5]. Third, most papers 
considering non-independent sample sizes deal with the case of 
asymptotically degenerate indexes. This is just the case yielding 
non-trivial results in the present paper. It seems that using 
martingale techniques or imposing some concrete conditions on 
the character of dependence between the sample elements and 
the sample size, the results of this paper can be extended for the 
non-independent case.

Deficiencies of Some Estimators Based on the 
Samples with Random Size
The asymptotic behavior of the deficiency of a statistic 
constructed from a sample with random size
The interpretation of the deficiency as the number of additional 
observations required to attain the same quality here needs to 
be refined since this number becomes random in random-size-
samples problems. In order to circumvent this difficulty assume 
that the r.v.’s N1, N2,… are parameterized by their expectations:

 = , .nE N n n∈
This assumption will enable us, instead of comparing random 
variables, to compare their easily tractable parameters.

Before we construct the exact formulas for the deficiencies so 
tractable, we have to make some important heuristic comments 
concerning the boundedness of the deficiency as a function of 
the parameter n. By X without any indexes we will denote a 
r.v. with the standard normal distribution N(0, 1). Let Tn be an 
asymptotically normal (1.1) (with σ(θ) = 1) statistic constructed 
from the sample X1,…, Xn, Nn

T  be (the same) statistic constructed 
from the random-size-sample 1, , Nn

X X . Assume that = ( )nE T gθ θ

, n∈ , implying n∈ , n∈  (Theorem 2.1). Denote,

 * 2 2( ) = ( ( )) , ( ) = ( ( )) .n n n Nn
R E T g R E T gθ θθ θ θ θ− −

From Lemma 1.1, for n large enough we have the approximate 
relations:
 1/2 1/2= ( ) ( ), = ( ) ( ),n Nn

X XT g o n T g o n
n Un

θ θ− −+ + + +

Where,
 ( < ) = ( ), ,P U x Q x x∈

and the r.v.’s X and U are independent. Therefore,

 * 1/2 2 2 1 11( ) = ( ( )) = ( ) ( ) = ( ),n
X XR E o n E o n o n

nn nθθ − − −+ + +

 
1

1/2 2 2 1 1( ) = ( ( )) = ( ) ( ) = ( ).n
X X E UR E o n E o n o n

nUn Unθθ
−

− − −+ + +

Equating *( )nR θ  and ( ) ( )m nR θ  we obtain,

 
1

1 11 ( ) = (( ) )
( ) n

n

E Uo n o n d
n n d

−
− −+ + +

+

or
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 = (1), ,nd D o n
n

+ →∞

Where,

 1= 1.D E U − −

So, in general, if EU-1 ≥ 1, then dn = O(n) . And the only possibility 
for dn to be o(n) and, in particular, to remain bounded, is the 
case:

 1 = 1.E U −

In general, if in addition to the conditions of Lemma 1.1, the 
family {Nn / n}n ≥ 1 is uniformly integrable, then the conditions 
of Lemma 1.1 and E Nn = n imply that EU =1, so that by the 
Jensen inequality we have EU-1 ≥ 1 with the equality attainable 
if and only if

 ( = 1) = 1.P U

In other words, for the deficiency dn to be bounded in n, it is 
necessary that the sample size Nn should be asymptotically 
degenerate in the sense that

 1nN
n

→

in probability as n → ∞. This property is inherent in sample sizes 
with the Poisson, binomial and special three-point distributions 
considered in the present paper.

It is worth noting that an example of geometrically distributed Nn 
for which the limit r.v. U  as the exponential distribution vividly 
illustrates the possibility of the deficiency to be unbounded 
since in this case the Fréchet distribution of the r.v. U-1 has the 
infinite first moment.

Summarizing the abovesaid we conclude that if the d.f. ( )Q x  in 
Lemma 1.1 is not degenerate, then the deficiency of a statistic 
constructed from a sample with random size whose expectation 
equals n with respect to the same statistic constructed as if the 
sample size was non-random and equal to n, grows almost 
linearly as n grows. A non-trivial behavior of the deficiency 
is possible only if the random sample size is asymptotically 
degenerate. This is the case to be considered in the present 
paper.

Some properties of estimators based on the samples with 
random sizes
Assume that for each n ≥ 1 the r.v. Nn takes only natural values 
(i.e., nN ∈ ) and is independent of the sequence X1, X2,… 
Everywhere in what follows the r.v.’s  X1, X2,… are assumed 
independent and identically distributed with distribution 
depending on θ ∈Θ∈ .

Recall that we assume that,
 = ,nE N n

that is, the expected sample size equals the sample size for the 
case where it is non-random, that is, the r.v. Nn is parameterized 
by its expectation n.

Theorem 2.1.

 1. If 

 = ( ), ,nE T gθ θ θ ∈Θ

Then,

 = ( ), .Nn
E T gθ θ θ ∈Θ

 2 . Let

 * 2 2( ) = ( ( )) , ( ) = ( ( )) .n n n Nn
R E T g R E T gθ θθ θ θ θ− −

Assume that there exist numbers a(θ), b(θ), C(θ) > 0, α > 0, r > 
0 and s > 0 such that

 * ( ) ( ) ( )| ( ) | .n r r s r s

a b CR
n n n α

θ θ θθ + + +− − 

Then,

 | ( ) ( ) ( ) | ( ) .r r s r s
n n n nR a E N b E N C E N αθ θ θ θ− − − − − −− − 

Proof: The desired relations can be easily obtained by the 
formula of total probability formula. Namely, we obviously 
have

 
=1 =1

= ( = ) = ( ) ( = ) =N k n nn
k k

E T E T P N k g P N kθ θ θ
∞ ∞

∑ ∑

 
=1

= ( ) ( = ) = ( ), ,n
k

g P N k gθ θ θ
∞

∈Θ∑
and

 | ( ) ( ) ( ) | =r r s
n n nR a E N b E Nθ θ θ− − −− −

 2

=1 =1 =1

( = ) ( = )= | ( ( )) ( = ) ( ) ( ) | =n n
k n r r s

k k k

P N k P N kE T g P N k a b
k kθ θ θ θ

∞ ∞ ∞

+− − −∑ ∑ ∑

 2

=1

( ) ( )= | [ ( ( )) ] ( = ) |k nr r s
k

a bE T g P N k
k kθ
θ θθ

∞

+− − −∑ 

 2

=1

( ) ( )| ( ( )) | ( = )k nr r s
k

a bE T g P N k
k kθ
θ θθ

∞

+− − −∑ 

 
=1

( ) ( = ) = ( ) .r s
n nr s

k

C P N k C E N
k

α
α

θ θ
∞

− − −
+ +∑ 

Corollary 2.1.  Let * 2( ) = ( ( ))n nR E T gθθ θ− , 2( ) = ( ( ))n Nn
R E T gθθ θ−

. Assume that there exist numbers a(θ), b(θ), r > 0 and s > 0 
such that

 * ( ) ( )( ) = .n r r s

a bR
n n
θ θθ ++

Then,

 ( ) = ( ) ( ) .r r s
n n nR a E N b E Nθ θ θ− − −+

Consider some examples.

1. Let observations X1,…, Xn have expectation EθX1 = g(θ) and 
variance DθX1 = σ2(θ). The customary estimator for g(θ) based 
on n observation is

 
=1

1= .(2.1)
n

n i
i

T X
n ∑

This estimator is unbiased and consistent, and its variance is

 
2

* ( )( ) = = .(2.2)n nR D T
nθ

σ θθ

If this estimator is based on the sample with random size, then 
we have (see Corollary 2.1)
 2 1( ) = = ( ) .(2.3)n N nn

R D T E Nθθ σ θ −

2. Now, if g(θ) is given, for σ2(θ) we consider the estimator of 
the form
 2

=1

1= ( ( )) .(2.4)
n

n i
i

T X g
n

θ−∑
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This estimator is unbiased and consistent, and its variance is

 
4* 4 ( ) ( )( ) = = , (2.5)n nR D T

nθ
µ θ σ θθ −

Where, μ4(θ) = (X1 - g(θ))4 . For this estimator based on a sample 
with random size we have

 4 1
4( ) = = ( ( ) ( )) .(2.6)n N nnR D T E Nθθ µ θ σ θ −−

3. In the preceding example suppose that g(θ) is unknown and 
instead of (2.4) we consider any estimator of the form

  

2

=1

1( ) = ( ) , .(2.7)
n

n n i n
i

T T X T
n

γ γ
γ

≡ − ∈
+ ∑ 

with Tn defined in (2.1). If γ ≠ -1, this estimator is not unbiased 
but may have a less expected squared error than the unbiased 
estimator with γ = -1. One easily obtains (3.6) [6].

 

4* 2 2 24
2 4

( )( )( ) = ( ( )) = [( 1)(( 1)( 1) 2) ( 1) ]
( ) ( )

n nR E T n n n
n nθ

µ θσ θθ σ θ γ
γ σ θ

− − − − + + +
+

and hence,

 * 4 34 4
4 2 4

( ) ( )1 1( ) = ( ) [ ( 1) (( 1) 2 2( 1))] ( ).(2.8)
( ) ( )

nR O n
n n

µ θ µ θγθ σ θ γ
σ θ σ θ

−+
− + + + − − +

Using Theorem 2.1 we have

  

2 2 4 14
4

( )( ) = ( ( )) = ( )[( 1) .
( )

n N nnR E T E Nθ
µ θθ σ θ σ θ
σ θ

−− − +

 
2 34

4

( ). ( 1)(( 1) 2 2( 1)) ] ( ).(2.9)
( ) n nE N O E Nµ θγ γ

σ θ
− −+ + + + − − +

Deficiencies of some estimators based on samples with 
random size having the Poisson distribution

When the deficiencies of statistical estimators constructed from 
samples of random size Nm(n) and the corresponding estimators 
constructed from samples of non-random size n (under the 
condition ENn = n) are evaluated, we actually compare the 
expected size m(n) of a random sample with n by means of the 
quantity dn = m(n) - n and its limit value.

We will now apply the results of Section 2.2 to the three 
examples. We begin with the case of the Poisson-distributed 
sample size. Let Mn be the Poisson r.v. with parameter n – 1, 
n ≥ 2, i.e.

 1 ( 1)( = ) = , = 0,1,
!

k
n

n
nP M k e k

k
− −



Define the random sample size as Nn = Mn + 1. Then, obviously, 
ENn = n and

 
1

1 1

=0

( 1) 1= = .
( 1)! 1

k n
n

n
k

n eE N e
k n

−∞
− − − −

+ −∑

Expanding the exponent in the Taylor series, we easily obtain 
that
 1 2

2

1 1= ( ).(2.10)nE N o n
n n

− −+ +

The deficiency of Nn
T  relative to Tn (see (2.1)) is given by (2.2), 

(2.3), (2.10) and (1.7) with r = s = 1, a(θ) = σ2(θ), b(θ) = 0, c(θ) 
= σ4(θ), and hence, is equal to

 = 1.d
Similarly, the deficiency of NnT  relative to nT  (see (2.4)) is 
given by (2.5), (2.6), (2.10) and (1.7) with r = s = 1, a(θ) = c(θ) 
= μ4(θ) - σ4(θ), b(θ) = 0, and hence, is equal to

 = 1.d
Now consider the third example (see (2.7)). We have

 11 1
2 1

2
=0 =1 0

( 1) ( 1) 1= = = .
( 1) ! 1 ! 1

nk n k n x
n

n
k k

n e n e eE N e dx
k k n kk n x

−− −∞ ∞
− − − − −

+ − −∑ ∑ ∫

Using the Bernoulli – L’H ô pital principle we obtain

 
1 1

0

1 , ,
1

n x ne edx n
x n

− −−
→∞

−∫ 

and

 2
2

1 , .(2.11)nE N n
n

− →∞

Now the deficiency of  NnT  with respect to  nT  (see (2.7)) is given 
by (2.8), (2.9), (2.11) and (1.7) with r = s = 1 and hence, is 
equal to

 
 = 1,d

whereas the deficiency of  1( )NnT γ  with respect to  2( )NnT γ  (see 
(2.7)) is given by (2.10), (2.11) and (1.7) with r = s = 1 and 
hence, is equal to

 
1 2

, 1 21 2 4
4

2= ( )( 2).
( ) / ( ) 1

d γ γ
γ γγ γ

µ θ σ θ
+ +

− −
−

Thus, the classical  (0)NnT  is better than  ( 1)NnT − , if

 4
4

( ) 11 > ,
( ) 2

µ θ
σ θ

−

with the situation reversed, if

 4
4

( ) 11 < .
( ) 2

µ θ
σ θ

−

In particular, if X1 is normal, then

 4
4

( ) 1 = 2
( )

µ θ
σ θ

−

and
  , 1 2 1 21 2

1= ( )( 2).
2

d γ γ γ γ γ γ− + −

One can therefore save an expected 3 / 2 observations by using 
the biased estimator  (0)NnT . The best value of γ in the normal 
case is γ = 1 for which  0,1 = 2d  and which therefore provides an 
additional saving 1 / 2 observations.

These examples illustrate the following statement.

Theorem 2.2.  Assume that there exist numbers a(θ), b(θ) and 
k1, k2 such that

 * 2
2

( ) ( )( ) = ( )n
a bR o n

n n
θ θθ −+ +

and

 1 2 2 2 3 21 2
2 2

1= ( ), = ( ), = ( ).n n n
k kE N o n E N o n E N o n

n n n
− − − − − −+ + +

Then the asymptotic deficiency of Nn
T  with respect to Tn is equal 

to

 1 2( ) ( )( 1)( ) = .
( )

k a b kd
a

θ θθ
θ

+ −

The  proof follows from Theorem 2.1, (1.6) and (1.7).

Deficiencies of some estimators based on samples with 
random size having the binomial distribution
In this Section the results obtained above will be applied to the 
calculation of the deficiencies of the estimators nT , nT ,  nT  (see 
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(2.1), (2.4) and (2.7)) constructed from samples whose sizes are 
random and have the binomial distribution.

Using the definition of the binomial distribution we directly 
obtain the following statement.

Lemma 2.1. Let the r.v. Bn have the binomial distribution with 
the parameters m(n - 1), n ≥ 2 and p = 1 / m, where m ≥ 2 is a 
fixed natural number. Define the r.v. Nn as

 = 1.n nN B +
Then, as n → ∞,

 1 3 3/2 5/2
2 3/2

1 1 1= , = ( ), = ( ),n n n
mE N n E N O n E N O n

n mn n
− − − −−

+ + +

 2 2 3
2

1 1( ) = ( ( )) = ( )( ( )),n Nn

mR E T g O n
n mnθθ θ σ θ −−

− + +

Lemma 2.1 and relations (2.3), (2.6) and (2.9) yield the 
following result.

Theorem 2.3. Let the r.v. Bn have the binomial distribution with 
the parameters m(n - 1), n ≥ 2 and p = 1 / m, where m ≥ 2 is a 
fixed natural number. Put Nn = Bn + 1. Then,

 
2 2 3

2

1 1( ) = ( ( )) = ( )( ( )),n Nn

mR E T g O n
n mnθθ θ σ θ −−

− + +

2 2 4 3
4 2

1 1( ) = ( ( )) = ( ( ) ( ))( ( )),n Nn
mR E T O n

n mnθθ σ θ µ θ σ θ −−
− − + +

 

2 2 4 4
4

( )1( ) = ( ( )) = ( ){ ( 1) .
( )

n NnR E T
nθ

µ θθ σ θ σ θ
σ θ

− − +

 
2 34

2 4

( )1 1. [( 1) 2( 2 1)( 1)]} ( ).
( )

m O n
n m

µ θγ γ
σ θ

−−
+ + + − − − +

Corollary 2.2.  Under the conditions of Theorem 2.3  the 
asymptotic deficiencies of the estimators Nn

T , NnT  and  NnT  with 
respect to the corresponding estimators nT , 

nT  and  nT  has the 
form

 1= .md
m
−

Deficiencies of some estimators based on samples with 
random size having a three-point symmetric distribution
In this Section we will consider the case where the random 
sample size Nn has the symmetric distribution of the form 

1( = ) = ( = ) = ( = ) = , (2.12)
3n n n n nP N n h P N n P N n h− +

where the sequence of natural numbers hn < n  satisfies the 
condition

 = 0, (2.13)lim n

n

h
n→∞

that is, hn = o(n) as n → ∞. It is easy to see that (2.12) and (2.13 
imply that Nn / n → 1 in probability as n → ∞.

Lemma 2.2.  Let the r.v. Nn have distribution (2.12)  under 
condition (2.13) . Then ENn = n and, as n → ∞,

 
1 2 4 3/2 2

3/2 3/2

1 2 1 1 1= ( ) ( ( ) ), = ( ( ) ),
3

n n n
n n

h h hE N O E N O
n n n n n n n n

− −+ + +

 
2 2 5/2 2

2 2 5/2 5/2

1 1 1 1= ( ( ) ), = ( ( ) ),n n
n n

h hE N O E N O
n n n n n n

− −+ +

 3 2
3 3

1 1= ( ( ) ).n
n

hE N O
n n n

− +

The  proof follows from the easily verified equalities

 
2 2

1
2 2

3= =
3 ( )

n
n

n

n hE N
n n h

− −
−

3/2
3/2 3/2 3/2

1 1 1= ( 1 ) =
3 (1 / ) (1 / )n

n n

E N
n h n h n

− + +
− +

3/2
3/2 3/2 3/2

1 1 1= ( 1 ) =
3 (1 / ) (1 / )n

n n

E N
n h n h n

− + +
− +

` 2
3/2 3/2

1 1= ( ( ) ),nhO
n n n

+

 2 2
2 2 2 2 2

1 1 1 1 1= ( 1 ) = ( ( ) ).
3 (1 / ) (1 / )

n
n

n n

hE N O
n h n h n n n n

− + + +
− +

The asymptotic formulas for 5/2
nE N −  and 3

nE N −  are established 
in a similar way. 

This Lemma and formulas (2.3), (2.6) and (2.9) directly imply 
the following statement.

Theorem 2.3. Let the r.v. Nn have distribution (2.12)  under 
condition (2.13) . Then,

 
2

2 2 2
3

21( ) = ( ( )) = ( )( ) ( ),
3

n
n Nn

hR E T g o n
n nθθ θ σ θ −− + +

 2
2 2 4 2

4 3

21( ) = ( ( )) = ( ( ) ( ))( ) ( ),
3

n
n Nn

hR E T o n
n nθθ σ θ µ θ σ θ −− − + +

  

2 2 4 4
4

( )1( ) = ( ( )) = ( ){ ( 1) .
( )

n NnR E T
nθ

µ θθ σ θ σ θ
σ θ

− − +

 2
24 4

2 4 3 4

2( ) ( )1. [2 ( 1)( 1 2( 1))] ( 1)} ( ).
( ) 3 ( )

nh o n
n n

µ θ µ θγ γ
σ θ σ θ

−+ + + + − − + − +

Corollary 2.3.  Let the conditions of Theorem 2.3  hold and

 
2

> 0, .nh h n
n
→ →∞

Then the asymptotic deficiency of the estimators Nn
T , NnT  and 

 NnT  with respect to the corresponding estimators nT , nT  and  nT  
has the form

 2= .
3
hd

It is worth noting that in Corollary 2.3 h can be arbitrarily 
large. Therefore the  finite asymptotic deficiency d considered 
in Corollary 2.3 can be arbitrarily large. This is in full 
correspondence with the conclusion of Section 2.1.

Asymptotic Deficiency and Quantiles
For n ≥ 1 let Tn = Tn(X1,…, Xn) be a statistic, that is, a measurable 
function of the r.v.’s X1,…, Xn. The asymptotic quantile of order 
α, α ϵ (0, 1) (the α – quantile) of statistic Tn is the value * ( )c nα  
for which
 * 1( ( )) = ( ), .(3.1)nP n T c n o n nα α −+ →∞
Using Taylor’s formula one has

Lemma 3.1.  Suppose that the distribution function of 
nn T  

satisfies (uniformly in x∈ ) the relation

 1
1 2

1 1( < ) = ( ) ( ) ( ) ( ),nP n T x G x g x g x o n
nn

−+ + +
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Where, G(x), g1(x), g2(x) are sufficiently smooth functions. 
Then,

 * 1
(1)

( )( ) =
( )

g cc n c
n G c

α
α α

α

− −
 

(2) 2 (1) (1)
11 2 1 1

(1) 3 (1) 2

( ) ( ) ( ) ( ) ( ) ( )1 ( ) ( ),
2( ( )) ( ( ))

G c g c G c g c g c g c o n
n G c G c

α α α α α α

α α

−−
− + +

Where, G(cα) = 1 - α.

Corollary 3.1.  Let δn → 0, n → ∞. Then under the conditions of 
Lemma 3.1 uniformly in x∈

 ( < ) =n nP n T x δ+

 2
(1) (2) (1) 2 1

1= ( < ) ( ) ( ) ( ) (max ( , , )).
2
n n n

n n nP n T x G x G x g x o n
n n

δ δ δδ δ −+ + + +

Now consider a statistic Sn = Sn(X1,…, Xn) other than Tn having 
α – quantile cα(n)

 1( ( )) = ( ), .(3.2)nP n S c n o n nα α −+ →∞

Suppose that:

 1
1 2

1 1( < ) = ( ) ( ) ( ) ( ), (3.3)nP n S x G x g x g x o n
nn

−+ + +

Where, 1 2( ), ( ), ( )G x g x g x  are some smooth 
functions. Define the sequence of positive integers 
{ ( ) = (1), , = 1,2, }m n n d o d n+ + ∈   by the relation ( d is 
the asymptotic deficiency)

 * 1
( )( ( ( ))) = ( ), .(3.4)m nP n S c m n o n nα α −+ →∞

Theorem 3.1. Under the conditions of Lemma 3.1 and (3.3) the 
asymptotic deficiency d equals

 2 2
(1)

2( ( ) ( ))= (1).
( )

g c g cd o
G c c

α α

α α

−
+

Proof. It follows from (3.1) and Lemma 3.1 that

 1
(1)

( )( ) =
( )

g cc n c
n G c

α
α α

α

− −

(2) 2 (1) (1)
11 2 1 1

(1) 3 (1) 2

( ) ( ) ( ) ( ) ( ) ( )1 ( ) ( )(3.5)
2( ( )) ( ( ))

G c g c G c g c g c g c o n
n G c G c

α α α α α α

α α

−−
− + +

and
* 12 2

(1)

( ( ) ( ))( ) 1( ( )) ( ( )) = ( ).(3.6)
2 ( )n

g c g cm n dc m n c m n c o n
n n n G c

α α
α α α

α

δ −−
≡ − − +

Moreover (3.4) implies

 1 *
( )( ) = ( ( ( ))) =m no n P n S c m nαα −+ 

 ( )= ( ( ) ( ( )) ).(3.7)m n nP m n S c m nα δ+

Using Corollary 3.1 we obtain

 1 (1) 1
( )( ) = ( ( ) ( ( ))) ( ) ( ).m n no n P m n S c m n G c o nα αα δ− −+ − +

Then (3.2) and (3.6) imply

 2 2
(1)

2( ( ) ( ))= (1).
( )

g c g cd o
G c c

α α

α α

−
+ 

Now we apply these results to our exapmle.

Let X1, X2,… be i.i.d.r.v.’s with

 

2
1 1 1= 0, = 1, | | < , 3, , > 0.(3.8)kE X E X E X k kδ δ+ ∞ ∈ 

Define

 
1

1= ( ).(3.9)n nT X X
n

+ +

Suppose that the distribution of X1 satisfies the Cramer condition 
(C)

 1
| |

| exp{ }| < 1.(3.10)limsup
t

E itX
→∞

Under the conditions (3.8) and (3.10) (see Theorem 6.3.2) we 
have [8]

2
,/2

,( 2 )/2
=1

| ( < ) ( ) ( ) | , > 0, , (3.11)sup
k

ki
n i kk

x i

C
P n T x x n Q x C n

n
δ

δδ

−
−

− +− Φ − ≤ ∈∑ 

where the functions 1 2( ), , ( )kQ x Q x−  are defined in [8]

 
3

2 1
1( ) = ( 1) ( ) ,

6
E XQ x x xϕ− −  

4 3 2
3 5 31 1

2
3 ( )( ) = ( 3 ) ( ) ( 10 15 ) ( ) .(3.12)

24 72
E X E XQ x x x x x x x xϕ ϕ−

− − − − +

Carrying out the type of computation outlined above we arrive 
at the following simplified version of Lemma 1.1 (see (3.11)).

Lemma 3.2. Let the conditions (3.8) – (3.10) with k = 3 be 
satisfied and * ( )c nα  be defined by (3.9), then

 
3

* 21( ) = ( 1)
6
E Xc n u u

nα α α+ − +

 2 3 4
3 3 11 1 31 ( (5 2 ) ( 3 )) ( ),

12 3 2
E X E Xu u u u o n

n α α α α
−−

+ − + − +

where uα = Ф-1(1 – α) denotes the upper α – point of the standard 
normal distribution.

Now let Y1, Y2,… be i.i.d.r.v.’s and

 2 4
1 1 1= 0, = 1, | | < , > 0.(3.13)E Y E Y E Y δ δ+ ∞

Define

 1
1= ( ).(3.14)n nS Y Y
n

+ +

Suppose that

 3 3
1 1= ,(3.15)E Y E X

And

 1
| |

| exp{ }| < 1.(3.16)limsup
t

E itY
→∞

Applying Theorem 3.1 we obtain

Lemma 3.3. Under the above conditions of Lemma 3.2 and 
(3.13) - (3.16) the asymptotic deficiency d (see (3.4)) equals

 
4 4 2

1 1( ) (3 )= (1).
12

E X E Y ud oα− −
+

Samples with Random Sizes
Consider random variables N1, N2,… è X1, X2,…, defined on the 
same probability space (Ω, A, P). The r.v.’s X1, X2,…, Xn  will 
be treated as observations with n being a non-random sample 
size, whereas the r.v.’s Nn will be treated as random sample size 
depending on the parameter n∈ . For example, if the r.v. Nn 
has the geometric distribution
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 11 1( = ) = (1 ) , ,k
nP N k k

n n
−− ∈

then

 = ,(4.1)nE N n

that is, the r.v. Nn is parametrized by its expectation n.

Assume that for each n ≥ 1 the r.v. Nn takes only natural values, 
that is, nN ∈  and are independent of the sequence X1, X2,…. 
Everywhere in what follows consider the r.v.’s X1, X2,… to 
be independent and identically distributed. By Hn = Hn(X1,.., 
Xn) denote a statistic, that is, real measurable function of 
observations X1,.., Xn. For each n ≥ 1 define tne statistic Nn

H  
constructed from the sample of random size, that is

 ( ) 1 ( )( ) ( ( ), , ( )), .N N Nn n n
H H X Xω ωω ω ω ω≡ ∈Ω

Now assume that the d.f. of the non-normalized statistic Hn 
admits an asymptotic expansion described by the following 
condition.

Condition A. There exist constants , 2k k∈  , 
, = 1, , , > 0in ni kα β∈  , > 0kC , a differentiable d.f. G(x) and 

measurable functions gj(x), j = 1,…,k such that

 
1

0, | | 0, ,maxn in
i k

nβ α→ → →∞


 
=1

| ( < ) ( ) ( ) | .sup
k

n in i k n
x i

P H x G x g x C nα β− − ≤ ∈∑ 

Lemma 4.1. If the condition A holds, then

 
=1

| ( < ) ( ) ( ) | .sup
k

N iN i k Nn n nx i
P H x G x E g x C Eα β− − ≤∑

The  proof is a simple exercise on the application of the formula 
of total probability.

Let X1, X2,… be i.i.d.r.v.’s and

 2
1 1 1= 0, = 1, | | < , 3, , > 0.(4.2)kE X E X E X k kδ δ+ ∞ ∈ 

Define for each n∈

 1
1= ( ... ).(4.3)n nH X X
n

+ +

Suppose that the distribution of X1 satisfies the Cramer condition 
(C)

 1
| |

| exp{ }| < 1.(4.4)limsup
t

E itX
→∞

Taking into accopnt (4.2), (4.4) and Theorem 6.3.2 [8] we obtain

 2
,/2

,( 2 )/2
=1

| ( < ) ( ) ( ) | , > 0, , (4.5)sup
k

ki
n i kk

x i

C
P H x x n Q x C n

n
δ

δδ

−
−

− +− Φ − ≤ ∈∑ 

Where, [8]

 
3

2 1
1( ) = ( 1) ( ) ,

6
E XQ x x xϕ− −

4 3 2
3 5 31 1

2
3 ( )( ) = ( 3 ) ( ) ( 10 15 ) ( ) .(4.6)

24 72
E X E XQ x x x x x x x xϕ ϕ−

− − − − +

Using (4.5) and Lemma 4.1, one has

Lemma 4.2. Let the conditions (4.2) - (4.4) be satisfied, then
2

/2 ( 2 )/2
,

=1
| ( < ) ( ) ( ) | .sup

k
i k

N n i k nnx i
P H x x E N Q x C E N δ

δ

−
− − − +− Φ − ≤∑

After these preliminaries (see (4.5) and Lemma 4.2), the 
following Lemma can be formulated.

Lemma 4.3. Suppose that the conditions (4.2) - (4.4) hold with 
k = 4, δ > 0 and there exist a, b such that

 1/2 11= , = ( ), ,n n
aE N n E N o n a
nn

− −+ + ∈
 1 1 (2 )/2 1= ( ), = ( ), ,n n

bE N o n E N o n b
n

δ− − − + −+ ∈
Then,

 11 2( ) ( )| ( < ) ( ) | = ( )sup n
x

Q x Q xP H x x o n
nn

−− Φ − −

and

11 2 1( ) ( ) ( )| ( < ) ( ) | = ( ).sup Nnx

Q x bQ x aQ xP H x x o n
nn

−+
− Φ − −

For n ≥ 1 let Hn = Hn(X1,.., Xn) be a statistic, that is, a measurable 
function of the r.v.’s X1,.., Xn. The asymptotic quantile of order 
α, α ϵ (0, 1) (the α – quantile) of statistic Hn is the value 

* ( )h nα  
for which

 * 1( ( )) = ( ), .(4.7)nP n H h n o n nα α −+ →∞
and we consider α – quantile of statistic Nn

H . That is the value 
hα(n) for which

 1( ( )) = ( ), .(4.8)Nn
P H h n o n nα α −+ →∞

Taking into account (4.5), (4.6) and Lemma 3.1 we obtain

Lemma 4.4. Suppose that the conditions (4.2) - (4.4) hold with k 
= 4, δ > 0, then under the conditions of Lemma 4.3 α – quantiles 

* ( )h nα
 and hα(n) admit the following asymptotic expansions

 
3

* 21( ) = ( 1)
6
E Xh n u u

nα α α+ − +

 
2 3 4

3 3 11 1 31 ( (5 2 ) ( 3 )) ( ),
12 3 2

E X E Xu u u u o n
n α α α α

−−
+ − + − +

 
3

21( ) = ( 1)
6
E Xh n u u

nα α α+ − +

2 3 4
3 3 3 2 11 1

1
( 3)1 ( (5 2 ) ( 3 ) 2 ( 1)) ( ),

12 3 2
E X b E Xu u u u a E X u o n

n α α α α α
−−

+ − + − + − +

where Ф(uα) = 1 - α.

Define the sequence of positive integers 
* *{ ( ) = (1), , = 1,2, }m n n d o d n+ + ∈   by the relation (d is the 

asymptotic deficiency)

 
* 1

( )
( ( ) / ( ( ))) = ( ), , (4.9)Nm n

P H m n n h m n o n nα α −+ →∞

Now we have in analogy to Theorem 3.1

Theorem 4.5. Suppose that

 1/2 11= , = ( ), ,n n
aE N n E N o n a
nn

− −+ + ∈

 1 1 (2 )/2 1= ( ), = ( ),n n
bE N o n E N o n b
n

δ− − − + −+ ∈
and 

1 2
(2 )/2

( ) ( )| ( < ) ( ) | , > 0,sup n
x

g x g x CP H x G x
n nn δ δ+− − − 

then the asymptotic deficiency d* (see. (4.9)) satisfies

 * 2 1
(1)

2( ( ) (1 ) ( ))= (1),
( )

g c b a g cd o
G c c

α α

α α

− −
+

where G(cα) = 1 - α.

The result of these steps is the following Lemma.
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Lemma 4.6. If the conditions of Lemma 4.3 are satisfied, we 
have (see. (3.12))

 * 2 12((1 ) ( ) ( ))= (1).
( )

b Q u a Q ud o
u u

α α

α αϕ
− −

+

If

 3
1 = 0,E X

Then,

 
2 4

* 1(1 ) (3 ) ( 3)= (1).
12

b u E Xd oα− − −
+

Discussion
The case of the samples with random size having a three-point 
symmetric distribution

In the previous section the results of section 3 were used to solve 
the main problem of this section. Here we briefly discuss another 
application of these results (see Lemma 4.2 and Theorem 4.5). 
Let Nn have a three-point distribution with parameter hn

 

, ,
1 1 1: , , (5.1)
3 3 3

n n

n

n h n n h

N

− +

where hn < n and

 = 0.(5.2)lim n

n

h
n→∞

Lemma 5.1. Let {hn} be a sequence of positive real numbers 
with hn < n and assume that (5.1) and (5.2) hold. Then,

 = ,nE N n

 1/2 2 31 1 1= ( ) ( ( ) ),
4

n n
n

h hE N O
n nn n n

− − +
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Proof: Here we only sketch the proof. We have:
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E N
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 2
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n n n
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The proof for the other cases are similar and left to the reader.

Carrying out the type of computation outlined above we arrive 
at the following simplified version of Lemma 4.1.

Lemma 5.2. Suppose that (4.2) - (4.4) (k = 4 and 0 < δ ≤ 1), 
(5.1) and (5.2) are satisfied. Then
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4
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hP H x x Q x
nn

− Φ − − −
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δ
δ

+
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Corollary 5.2. Under the conditions of Lemma 5.2 we have for 
hn = n3/4 (uniformly in x∈ )

 
1

1 2 1
1 1 1( < ) = ( ) ( ) ( ( ) ( )) ( ).

4Nn
P H x x Q x Q x Q x o n

nn
−Φ + + − +

The result of these Lemmas is the following Theorem.

Theorem 5.3. If the conditions of Corollary 5.2 are satisfied, we 
have (see (4.7), (4.8) and (4.9))
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where Ф(uα) = 1 - α and
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Conclusion
In the paper we consider asymptotic deficiencies of some 
estimators based on the samples with random sizes. It can be 
illustrative characteristic of a possible loss of the accuracy of 
statistical inference if a random-size-sample is erroneously 
regarded as a sample with non-random size. Some basic results 
dealing with some properties of estimators based on the samples 
with random sizes are also presented.
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