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Introduction
Malaria is a dangerous disease that is transmitted to 
people through the insect bite of infected mosquitoes with 
plasmodium [1]. World health organization reported that, 
about 3.4 billion people live in areas at risk of malaria 
transmission in 106 countries and territories. In 2013, it 
was reported that malaria caused 198 million clinical 
episodes, and 500,000 deaths [2]. 

The intestine is not directly affected by malaria, although 
abdominal pains and nausea are symptoms of malaria. 
This may be due to the infection induced fever. During 
the infection of human with Plasmodium, the capillaries 
of the intestinal villi could be blocked with parasitized 
erythrocytes [3] and are associated with gastrointestinal 
injury with defects in metabolism [4,5].

The cellular constituents of the innate defense system in 
the intestine include epithelial cells, goblet cells, dendritic 
cells and macrophages. The front line of this system is the 
mucous layer containing goblet cells which secrete mucin 
[6,7]. The response of goblet cells was observed in several 
intestinal infections due to bacteria, viruses and parasites. 

Decreases number of goblets cells (hyperplasia) was 
observed in some parasitic infections like helminthes [8,9] 
but hypoplasia of these cells were observed in coccidial 
infection with Eimeria [10,11].

Due to infection with Plasmodium parasites, the host 
natural immune response is activated and generates large 
amounts of reactive oxygen species causing disorganization 
between oxidizing species and antioxidants [12]. This 
disorganization could lead to a status of oxidative stress. 
This induced oxidative stress is considered to be an 
important mechanism as a host response to infection that 
induces parasite death. Our study aimed to investigate the 
intestinal oxidative damage and mucin regulated gene 
response to Plasmodium chabaudi infection.

Materials and Methods
Animals

Twenty adult female C57Bl/6 mice weighed 23-27 g and 
aged 9-12 weeks were obtained from the animal facilities 
of King Saud University, Riyadh, Saudi Arabia. The mice 
were bred under specified pathogen-free conditions and 
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fed a standard diet and water ad libitum. The experiments 
were approved by state authorities and followed Saudi 
Arabian rules for animal protection.

Infection of Mice

Blood stages of P. chabaudi were weekly passaged in 
Swiss albino mice. Experimental animals were challenged 
with 106 P. chabaudi-parasitized erythrocytes. Parasitemia 
was evaluated in Giemsa stained blood smears, and total 
erythrocytes were counted in a Neubauer chamber.

Animals were divided into two groups. The first group 
served as a vehicle control. The second group was infected 
with 106 P. chabaudi-parasitized erythrocytes. All mice 
were sacrificed on day 8 post-infection.

Histological Analysis

Pieces of jejunum were freshly prepared from mice 
on day 8 postinfection with P. chabaudi, fixed in 10% 
neutral buffered formalin, and then embedded in paraffin. 
Sections were cut and then stained with hematoxylin and 
eosin. According to Dommels et al. [13], tissue sections 
were scored for inflammatory lesions (infiltrations 
by mononuclear cells, neutrophils, eosinophils, and 
plasmacytes, for fibrin exudation and lymphangiectasis, 
for tissue destruction (enterocyte loss, ballooning 
degeneration, edema, and mucosal atrophy), and for 
tissue repair (hyperplasia, angiogenesis, granulomas, 
and fibrosis). A rating score between 0 (no change from 
normal tissue) and 3 (lesions involved most areas and 
all the layers of the intestinal section including mucosa, 
muscle, and omental fat) was given for each aspect of 
inflammatory lesion, tissue destruction, and tissue repair. 
The sum of inflammatory lesions, tissue destruction, 
and tissue repair scores was used to represent the total 
histological injury score (HIS) for each intestinal section. 
The sum of the inflammatory lesions was multiplied by 2 
to give more weight to this value since the tissue changes 
were mainly characterized by inflammatory lesions 
[13]. Stained tissue sections were imaged using light 
microscope (Olympus, Japan) provided with digital high 
resolution camera.

The number of Goblet Cells

Sections were stained with Alcian blue for determination of 
the goblet cells. For each animal, the number of goblet cells 
in the jejunum was counted on at least ten well-orientated 
villous-crypt units (VCU). Results were expressed as the 
mean number of goblet cells per ten VCU [14].

Oxidative Stress

Part of the jejunum was weighed and homogenized 
immediately in order to prepare a 50% (w/v) homogenate 
in an ice cold medium containing 50 mM Tris–HCl and 
300 mM sucrose. The initial homogenate was centrifuged 
at 500 × g for 10 min at 4°C. The supernatant was diluted 
with the Tris sucrose buffer to give 10% and was then used 
for the various biochemical determinations.

Glutathione

Glutathione (GSH) was determined chemically in 
jejunal homogenate using Ellman’s reagent [15]. The 
method is based on the reduction of Ellman’s reagent 
(5,5dithiobis(2-nitrobenzoic acid) with GSH to produce a 
yellow compound. The chromogen is directly proportional 
to GSH concentration, and its absorbance was measured 
at 405 nm.

Lipid Peroxidation

Lipid peroxidation in jejunal homogenate were determined 
according to the method of Ohkawa et al. [16] by using 1 ml 
of  10% trichloroacetic acid and 1 ml of  0.67% thiobarbituric 
acid, followed by heating in a boiling water bath for 30 min. 
Thiobarbituric acid reactive substances were determined by 
the absorbance at 535 nm and expressed as malondialdehyde 
(MDA) equivalents formed.

Nitric Oxide

The assay of nitrite in jejunal homogenate was done 
according to the method of Berkels et al. [17]. In acid 
medium and in the presence of nitrite the formed nitrous 
acid diazotises sulphanilamide, which is coupled with 
N-(1-naphthyl) ethylenediamine. The resulting azo dye 
has a bright reddish-purple color which was measured at 
540 nm.

Quantitative Real-Time PCR

Trizol (Invitrogen) was used to isolate the total 
RNA from mice jejuna. DNA-freeTM kit (Applied 
Biosystem, Darmstadt, Germany) was used to digest the 
Contaminating genomic DNA. To synthesize cDNA, we 
used the QuantiTect® Reverse Transcription kit (Qiagen, 
Hilden, Germany). Real time PCR was performed in a Taq-
Man7500 (Applied Biosystems) using the QuantiTectTM 
SYBR® Green PCR kit (Qiagen) and the gene-specific 
QuantiTectTM primer assay (Qiagen) according to the 
manufacturer’s instructions. The primers for mucin genes 
(MUC2 and MUC4) and 18S rRNA were purchased from 
Qiagen (Hilden, Germany). Following an initial incubation 
at 50 °C for 2min, Taq polymerase was activated at 95 °C 
for 10 min, 45 cycles followed at 95 °C for 15 s, at 60 °C 
for 35 s, and for 30 s at 72 °C. PCR product was measured 
as SYBR green fluorescence at the end of the extension 
phase. All PCR reactions yielded only a single product of 
the expected size as revealed by melting point analysis 
and gel electrophoresis. Relative quantitative evaluation 
of amplification data was done using Taqman 7500 system 
software v.1.2.3f2 (AppliedBiosystems) and the 2−ΔΔc T 
method [18]. Expression of the genes was compared to 
18S rRNA [19].

Statistical Analysis

Student’s t-test was used to determine significant 
differences. Data were represented as means ± SD of 
triplicate experiments and P≤0.05 was used to denote 
statistical significance.
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Results
The infection of female C57Bl/6 mice with 106 P. chabaudi 
parasitized erythrocytes induced a maximum parasitemia 
(about 47%) on day 8 p.i. Light microscopical inspection 
of hematoxylin-and-eosin-stained sections revealed that 
the epithelial cells of the jejunum of mice infected with 
P. chabaudi were injured (Figure 1). The injury was semi 
quantified by applying the scoring according to Dommels 
et al. [13]. The infection induced a marked inflammatory 
injury in the jejunum (Figure 2). In addition, examination 
of Alcian blue stained sections (Figure 3) showed a 
significant increase (P≤0.05) in goblet cell numbers seen 
at the jejuna villi (Figure 4).

On day 8 p.i. with P. chabaudi parasitized erythrocytes, 
there was a significant increase (P≤0.05) in the level of 
NO (539 ± 7, µmol/g) and MDA (28±1, nmol/g) (Table 
1) while the level of GSH (7±0.1, mg/g) was significantly 
(P≤0.05) decreased by the infection (Table 1).

Quantitative real-time PCR was used to detect changes in 
the mRNA levels of mucin genes in the jejunum. Upon 
infection with P. chabaudi, there was a significant increase 
in the mRNA expression of MUC2 and MUC4 (Figure 
5). Gene expression corresponding to MUC2, the main 
gel-forming secretory mucin in intestine, significantly 
(P<0.01) increased in the jejunum of mice infected with 
P. chabaudi when compared to the non-infected animals 
(Figure 5). Also, MUC4, another membrane-associated 
mucin, was significantly (P≤0.05) up regulated by malaria 
infection (Figure 5). This upregulation was approximately 
two fold increase when compared to the non-infected 
control.

Discussion
Our previous studies illustrated that spleen and liver act 
as effectors against malaria infection [20, 21]. Up to date, 
there is no study investigated the role of the intestine 
against malaria infection except Chau et al. [22] who 
investigated that increasing L-arginine bioavailability 
via oral supplementation can ameliorate malaria-induced 
intestinal pathology.

Getting rid of plasmodial stages is mediated by both 
acquired [23] and innate [24] immune responses. The 
infected mice were able to heal the induced infection by 
P. chabaudi and also, develop immune response against 
reinfection. Our results is in agreements with other studies 
that found an increase in parasitemia during the phase of 
crises [25,26]..

Oxidative stress markers during infection are found in a 
significant increased level compared to the non-infected 
controls animals [27-29]. It is know that, oxidative stress 
could result from free radical production, this fact also may 
be due to increase malondialdehyde which is considere to 
be an important lipid peroxidation marker, this indicated 
that, oxidative stress is an important process during 
parasitic infection [30]. The high Also, the increased 

level of TBARS, the lipid peroxidation product was seen 
in infected red blood cells by P. falciparum, P. vinckei, 
P. berghei, and P. chabaudi [31]. In addition, NO has an 

Figure 1. Plasmodium chabaudi-induced changes in intestine 
histology of C57BL/6 mice. Section from non-infected group 
(A) and P. chabaudi infected group (B). Infection induced 
inflammation (astar) and cellular vacuolation (arrow). Also, 
some parasitized erythrocytes (arrow head) are present. 
Sections are stained with hematoxylin and eosin. Scales 25 μm.

Figure 2. Total histological injury scores in intestine of non-
infected and infected mice with P. chabaudi on day 8 p.i. 
Scores were calculated according to Dommels et al. (2007). 
Values are means ± SD. *Significance against non-infected 
group at p ≤ 0.05.
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important role in malaria where increased serum levels 
of NO favor parasitemia resolution without affecting the 
host. Moreover NO was previously seen as a toxic agent 
which is also, responsible for the inflammatory processes 
and could indirectly activate cytokines to activate the 
immune system [12].

Hyperplasia of goblet cells due to malaria has not been 
described before. In our model, P. chabaudi infection 
is associated with increased goblet cells. However, 
hyperplasia of goblet cells has been investigated in a 
number of bacterial, viral and parasitic infections [32]. 

Moreover, our results of qRT-PCR, revealed that the 
expression of MUC-2 and MUC-4 were significantly 
increased due to P. chabaudi infection. It is documented 
that, MUC-2 is the first line of innate host defense that 
could act to prevent the induced injury due to infection 
[33]. In addition, Kim and Ho [33] reported that mucin 
plays a critical role in many stages of metastatic processes 
of colorectal cancer where colon cancer cell lines that 
studied for high capacity for metastasis showed to 
upregulate MUC2. Moreover, MUC4 plays important 
roles in the carcinogenesis and progression of multiple 
human cancers, including pancreatic cancer [34,35].

Collectively, studying the intestinal response to P. 
chabaudi infection could help in understanding the process 
of intestinal oxidative damage as well as the role of mucin 
related genes during infection. Further studies are required 
to know the mechanism and the pathway by which the 
parasite induce these intestinal alterations.
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