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Abstract

One of the main issues with MANET is Topology control arising due to its dynamic nature. Efficient
control of topology in MANET is possible only when mobility prediction is done to avoid any kind of
interruption in the communication. In this work, neural network based mobility prediction model for
topology control is proposed. In this prediction model a highly scalable and accurate multi-layer
architecture is exploited to perform N-step prediction to forecast the future location of the mobile nodes.
The optimal path is then selected based on the minimum interference, transmission power values of
nodes and the path availability using Ant Colony Optimization (ACO) technique. Clinical care data is
collected during the course of ongoing patient care. The proposed method provides uninterrupted
communication for transferring clinical care data like details about rehabilitation hospitals for patients.
The simulation results obtained prove that the proposed technique is successful in reducing the packet
drop, transmission delay and improves the packet delivery ratio as well as residual energy.
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Introduction

Mobile ad-hoc network (MANET)
Mobile Ad-hoc Network (MANET) consists of a set of self-
organized mobile nodes that are associated with low band-
width wireless links. Each node has its own area of control
called “cell”. In MANETs, there are no fixed infrastructures
and the nodes are free to move due to which the network
topology may change rapidly over time. This results in the
nodes preparing their own acceptable infrastructures [1-3].
Clinical data is a essential resource for most health and medical
research. The different types of Clinical data include Electronic
health records, administrative data ,Claims data , Patient /
Disease registries, Health surveys and Clinical trials data.

Mobility prediction in mobile ad-hoc networks
Mobility Prediction of a node is referred to as the capacity to
evaluate a future position given past positions [4]. It is used in
location supported routing and mobility aware topology control
protocols [5]. These protocols predict the future location of
each node easily and forecast parameters such as future
distance between two neighboring nodes.

The major issue of mobility prediction is the inaccuracy in the
future distances forecaster. The effectiveness of this forecaster
may vary due to the presence of unusual mobility models,
sampling rates and dissimilar speed ranges [5]. Unpredictable

changes in the user’s behavior are also a major issue in
mobility prediction. Due to dynamic topology and non-regular
rations in such functions, node mobility forecast based on the
movement history is not feasible and effective. For most of the
MANET applications, group and node velocities are time
variant which affects the accuracy of location predictor [6].

Issues in topology control in mobile ad-hoc networks
Topology control is mandatory due to the continuous change in
the primary topology of the network. A centralized approach
can achieve strong connectivity but has many scalability
issues. In contrast, a distributed approach is scalable but lacks
the strong connectivity guarantees and consumes a large
amount of power [7].

Literature Review
Aiyud et al. [8] discussed Group Mobility Prediction in Mobile
Ad-hoc Network. The authors applied a data mining technique
to forecast behavioral group patterns consequential from user
movement’s data in a mobile computing system. The proposed
algorithm is based on mining the mobility patterns of users in
each group, forming mobility rules from these patterns and
finally predicting a mobile user’s group movement by the
declared mobility rules. The performance metric discussed is
latency which is reduced. The proposed algorithm may not
match or may be only a miniscule match to any of the mobility
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rules to the present trajectory of a mobile user. So, no
prediction can be consummate in various cases when the
exploitation gets very high.

Hakki Bagci et al. [9] have discussed about fault tolerant
topology control in ad-hoc networks. This work proposed a
disjoint path vector algorithm where k- disjoint paths between
source and destination. At worst case there will be single link
between the nodes atter all link failures. Yassir et al. [10]
proposed a user profile-based location prediction based on the
neural networks concept. Elman networks were used and a
probability of 85% was achieved to identify the right location
area. Asha et al. [11] proposed Network Connectivity based
Topology Control (NCTC) to establish the balance between
interference and energy to enhance the network lifetime of
networks. In this scheme, first, interference was reduced and
further, the efficient topology control based on energy
constraint was proposed to extend the network lifetime of
networks. Performance metrics like network lifetime, packet
delivery ratio, less overhead and end to end delay has been
analyzed. During Link Weight Information Exchange, each
node performed the weight calculations for all links. Hence,
this approach required more computation time and stricter
preconditions which may cause computational overhead.

Distance Vector (DV) unicast protocol enhanced with mobility
prediction offers packet delivery ratios of 0.9 (i.e., 10% of
packet loss) for speeds up to 70 km/h. Also, the On-Demand
Multicast Routing Protocol (ODMRP) [12] with mobility
prediction performs better than its counterpart without
prediction and offers packet delivery ratio of 0.9 (i.e., 10% of
packet loss) for speeds up to 70 km/h [13].

Proposed Solution
Literature survey disclosed the fact that a scheme with a
capability to provide fault tolerant topology control and
mobility prediction together is required. To accomplish this,
the link availability estimation technique analyzed by Teotia
and Garg [14] was merged with neural network based
prediction model evaluated by Kannche and Kamoun in their
work [9]. The following sections discuss the details of the
proposed work.

Overview
In earlier work [15], topology control in MANETs had been
clutched through swarm intelligence. Each node constructs its
neighbor set by sending a neighbor discovery message to its
neighbors. The fault tolerant path is identified by estimating
minimum transmission consumption and minimum
interference path. To augment the previous work, mobility
prediction with topology control was performed to find the
most reliable path for unremitting communication. Optimal
path is selected based on the interference, transmission power
values of nodes and path availability. The minimum
interference and transmission power values of nodes are
determined using Ant Colony Optimization and path
availability by neural network mobility prediction method.

The different phases of the proposed model are explained as
follows. The first one is the use of swarm intelligence to find
the transmission power and interference of neighbor nodes
using ant agents. Subsequently, the phase deploys Neural
Network Based Prediction model [9] was used in which the
recurrent multi-layer neural network with three layers was
utilized to predict the mobility of neighbor nodes. Finally,
based on the prediction, path availability and the time period of
its existence were estimated [14]. The following section
explains multilayer neural network architecture for mobility
prediction.

Multi- layer neural network architecture
Three main layers that are arranged in a feed forward fashion
are used for mobility prediction as shown in Figure 1.

Input layer: The main function of network input layer in N-
step prediction is accepting time series observations along with
estimated input coming from the previous network. In each
prediction step k where k ≠ N, the network output p̂(t+k) is
stored in the input layer so that it is able to estimate the value
p̂(t+k). This is done based on feedback connection between
output neuron and a neuron in the input layer.

Figure 1. Multilayer based mobility prediction architecture.

Hidden layer: The second layer is called as hidden layer. The
main function of this layer is to store the characteristics of the
known patterns to increase the freedom of degree in the
problem resolution to improve the generalization ability of the
network.

Output layer: This layer receives the different prediction
values from the input layer and after evaluating the values it
sends the feedback to input layer.

Notations: The different notational conventions used for
neural architecture are the Ne, Nc and Np which denotes the
number of neurons in input, hidden and output layers
respectively. The values that have been assigned for Ne where
e= {1……….Ne}, Nc c= {1………….. Nc} and Np p=1. In this
bias terms are obtained by adding a bias neuron in both input
and hidden layer whose input have constant value which is
equal to 1. Iv represents the weighted sum of the input which is
calculated by neuron v of either hidden or output layer. Iv is
computed at each neuron becomes argument of a sigmoid
activation function and stays in the neuron itself. Ov is the
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value returned by the activation function of neuron v as given
in the equation (1).�� = ∑� ��� .�� , �� = �(��), (1)
�:� 11 + �−� , �′(�) = �(�) . (1− �(�)) (2)
The N-step multilayer mobility prediction algorithm: The
proposed prediction algorithm can be described briefly as
follows.

Step 1: In the prediction step k, a real observation r(t+k) is
forecasted as p̂(t+k) which corresponds to network output. The
quantity Jk is used in the eq (3) in order tp denotes the square
error function in prediction step k.�� = 12 �∧ (� + �) − � (�+ �) 2 (3)
The total error function in prediction step N is given as the
summation of error functions Jk that corresponds to prediction
step k.

� = ∑� = 1� �� = ∑� = 1� 12 �∧ (� + �) − � (�+ �) 2 (4)
Step 2: The network is then made qualified using Back
Propagation through Time (BPTT) algorithm by minimizing
the error function J.

Step 3: The weights are then modified at the time (t+N) which
corresponds to the Nth prediction step with the help of function
error J.���� = − � ∂ �∂������� = − � ∑� = 1� ∂ �∂���= − � ∑� = 1� �����∧ (�+ �) ��∧ (�+ �)����= − � ∑� = 1� (�∧(�+ �) − �(� + �)) .
( ∑� = 1� ∂ �∧(�+ �)∂ �∧ (�+ � − �) • ��∧ (�+ � − �)���� + ∂ �∧(�+ �)���� )

(5)

Here, n represents number of forecasted inputs from the input
layer since the network output is re injected in the input layer.

The quantities ∂�∧(�+ �)∂�∧(�+ � − �)  and ∂�∧(�+ �)∂���  is given by:

∂�∧(�+ �)∂��� = ∑� = 1
�� ∂�∧(�+ �)∂�� • ∂��∂�� • ∂��∂�� • ∂��∂�∧(�+ � − �) = = �

(��) • ∑� = 1
�� ��� • �′ (��) • ��� (6)

Here, the weight ωec represents the weight of the link
connecting the neuron e in the input layer whose input is s (t +
k- j) and a neuron c in the hidden layer.∂�∧(�+ �)∂��� = ∂�∧(�+ �)∂�� • ∂��∂��� (7)
The Random Way Point (RWP) Mobility model is used to
construct the location time series. In this model, a mobile node
starts from its current position and chooses randomly a
destination position in its mobility region. Then, it moves
straight towards this destination with a constant speed, chosen
randomly in various intervals of speed. When it reaches the
destination, it remains stable for a period of time and then
restarts the same movement process.

Link availability prediction
The different metrics used in this work can be explained briefly
in the following sections.

Estimation of metrics: PT and L(PT). This section describes
two metrics which are used to find the link expiration time and
subsequently path expiration time. The time period (PT) during
which link exists between nodes is predicted by assuming that
both nodes move with same speed and direction. Then, the
probability L(PT) of link availability during the time period t0
to PT is estimated by considering changes in the nodes’
movements as given in equation (8).�(��) =� � �� ���� �� �0+ �� ��������� �� �0 (8)
Equation (8) implies probability that the existence of link
availability throughout the time interval t0 and t0+PT. L(PT)
comprises of two components namely L1(PT) which gives the
probability of the existence of link availability between two
nodes with their velocity remains constant and L2 (PT) for
other cases.

L(PT) = L1(PT) + L2(PT) → (9)

Calculation of L1 (PT): Assuming the random length interval
(epoch) in which each node moves in a constant direction at a
constant speed, then the expected value of time is�(�) =� �(������ �����ℎ ���� int�����  ≤  � = 1− �−��(10)
Since the movement of nodes follow an exponential
distribution and are independent of each other, L1(PT) can be
calculated as follows.�1(��) = [1− �(��)]2 = �−2���   11
Calculation of L2(PT): Let δ be the random time interval
during which there is a change in movement of the nodes and
Φ be the random interval where the nodes keep their
movements unchanged. Thus, the change in movement of
either one node or both will occur only after t0 + Φ. To
calculate L2(PT) the probability should be considered as
follows
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P(Φ ≤ δ ≤ Pτ)=2[E(Pτ)-E(Φ)][1-E(Pτ)]+[E(Pτ)-
E(Φ)]2=e-2λΦ-e-2λPτ → (12)

The probability for Φ is given byℓ2(�) = �+ (�� − �)��−2�[�� − �]�� (13)
p - is the probability for the two nodes to move to closer each
other after changing their movements. Since there is equal
probability for the nodes to move to closer each other or far
apart, probability value for p is 0.5. φ ≥ 0 - is the adjustment to
link availability depends on factors such as node density and
radio coverage of the node. Consider the first change in the
movement of the nodes occur at t0 + Φ. From t0 + Φ to t0 + PT,
total time (Tt) that a link will be continuously available can be
formulated as�� = �+ (��− �)��−2�(�� − �)+ ... (14)
For the movement changes in the remaining time period the
above calculation has to be repeated to calculate the ‘…’ in eq.
(14).

The average value ℓ2 is used to estimate L2 (PT).ℓ2 =∫0 ��ℓ2(�)�(�)���(�) = lim�� �� � ≤ � < �� − � �+ �� ≤ � < ���� =
− �� � ≤ � < ���� = 2��−2
ℓ2 ≈∫0�� �+ (��− �)�� − 2�[��− �]�� + � 2��−2����
= 12��� + �+ �−2��� ����− 12��� − � − 1�(��) ≈ �1(��) + ℓ2 (15)
= 12��� + �+ �−2��� ����− 12��� − �
�(��) ≈ 1− �−2��� 12��� + � + ����−2���2 (16)
Calculation of Φ: In order to make the proposed estimation
algorithm adaptable to environmental changes, the value of φ is
measured as follows. After the prediction of link availability
PT using equation (16) the real observed value PR during which
the link is really available is measured. This will be repeated a
number of times to record PR value and the number of
occurrences (nr) that have the same PR value. Measured PT
value Lm(PT) is calculated.

��(��) = ∑� = 1�� ��, ��� × ��∑� = 1�� �� (17)
Substituting eq. (17) in eq. (16) φm measured value is

�� ≈ ��(��)− ����−2���21− �−2��� − 12���
Optimal path selection
Neighbor set (NS) construction: Initially after all nodes are
deployed in the network, each node broadcast NEI_DIS
(Neighbor Discovery) message to discover its neighbors.
Nodes that receive NEI_DIS message, sends back the ACK
message.

The ACK message holds node id, sequence number and hop
count. Each node waits for a time twait to receive ACK message
from all possible neighbors. After the expiration of twait, it
constructs the Neighbor Set (NS) by retrieving the information
from ACK messages. The NS table format is given below in
Table 1.

Table 1. NS table format.

Node
ID

Seq
. No

Hop
Count

Chosen
Trans
Power

Inter
ference No

Link Availability
Duration

In the above table, CH Trans Power will be updated by ant
agent and interference number by IN_NUM packets. Consider
network is designed as a communication graph G (V, E).
Where, V represents nodes and E denotes the link. Let ni, nj, nk
… nn-1 be the set of mobile nodes. During transmission of data
from ni to nj, node ni may interfere the nodes that are nearer to
ni and nj. Unidirectional interference set (UDI) contains the set
of nodes that are interfered by ni’s transmission to nj. UDI (ni,
nj) can be estimated by,

UDI (ni, nj) = {nk ε V | dis (ni, nk) ≤ dis(ni, nj)}

Where, nk is a neighbor node and dis (ni, nj) be the euclidean
distance between ni, nj. Optimal path from the source s to
destination d can be obtained by relating interference,
transmission power values of nodes and path availability
duration. Optimal path selection process is portrayed in
algorithm 1

Algorithm 1

Step 1: Each node calculates its transmission power and its
interference number which are described in previous work
[15].

Step 2: Link availability duration (Pa) is estimated using N-
step neural network based prediction.

Step 3: Forward and backward ants are employed to collect
CH Trans Power of nodes.
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Step 4: Transmission power (TP) of each path is determined
by aggregating the CH Trans Power values of all nodes in that
path.

TP (Pn) = CH Trans Poweri

Where, i= 1, 2, 3… n=1, 2, 3…

Step 5: The interference numbers of the node are accumulated
by sending IN_NUM message packets.

Step 6: Interference number (IPn) of each path is calculated.
The values of TP, IPn and path availability durations are stored
in NS table.

Step 7: Select the path that satisfies Popt=min{TP (Pn)} and
min {IPn}, and Max {Pa}.

Where the minimum transmission power and interference
number is found by using Ant Colony Optimization (ACO).

Step 8: The path (Popt) is selected for data transmission from
the source to the destination.

Figure 2. Optimal path selection.

In Figure 2, nodes 2, 3, 4… 14 are deployed randomly. P1, P2,
P3 and P4 are paths that connect source and destination. S- 6-
8- D is the optimal path since it has minimum transmission
power and interference and maximum path availability
duration.

Simulation Results

Simulation model and parameters
The Network Simulator (NS2) [16] is used to simulate the
proposed architecture. The simulation has been performed for
different scenarios, one by keeping transmission range constant
and the other by varying the transmission range of the mobile
nodes; 50 to 100 mobile nodes move according to RWP
mobility model in 1000 meter × 1000 meter region for 100
seconds of simulation time with the same transmission range of
250 meters and the simulated traffic is Constant Bit Rate
(CBR). Data for transmission is taken from dataset that
contains details about rehabilitation hospitals which are
equipped with inpatient wards for evaluation and restoration of

function to patients who have lost function due to acute or
chronic pain, musculoskeletal problems, stroke, or catastrophic
events resulting [17].

Two location time series x(t-i) {i= 0.. 20} and y(t-i) {i= 0..20}
have been obtained. From the observation, 5 sets of data were
taken and prediction was done for the same. The first 50 pair of
co-ordinates was used for training and the rest for
generalization. The NN based predictor was tested on these
two location time series to predict the movement of mobile
nodes. The parameters Ne and Nc were fixed respectively at 10
and 5. The simulation settings and parameters are summarized
in table.

Table 2. Simulation parameters.

No. of Nodes 50, 100,150, and 200

Area Size 1000 × 1000

MAC IEEE 802.11

Transmission Range 250 m (scenario 1) and 250 m, 450 m
(scenario 2)

Simulation Time 100 sec

Routing Protocol SWARM

Initial Energy 15.3 J

Receiving Power 0.395

Transmission Power 0.660

Bit Rate 200 kb

Speed 5,10,15,20 and 25 m/s

Performance metrics
The proposed swarm based topology control for fault tolerance
with neural network based mobility prediction (SwarmFTCP)
is compared with the Local Minimum Interference Bi-
connected Communication Networks LMIBCN method [11].
In LMIBCN fault tolerance was implemented in terms of
interference alone whereas the proposed method has identified
a path between a source and destination with minimum
interference, minimum power consumption and highly stable
path. The performance is evaluated mainly primarily according
to the following metrics.

• Packet delivery ratio: It is the ratio between the number of
packets received and the number of packets sent.

• Packet drop: It refers to the average number of packets
dropped during the transmission.

• Energy consumption: It is the amount of energy remains
in the nodes after the data packet transmission.

• End-to-end delay: It refers to the time taken for a packet to
be transmitted across a network from source to destination.

Results
Based on speed with constant transmission range: In this
experiment, the speed of the mobile nodes is varied as

MANETs for clinical care data transmission

Special Section:Artificial Intelligent Techniques for Bio-Medical Signal Processing
S40Biomed Res- India 2017 Special Issue



5,10,15,20 and 25 m/s for which the number of nodes is varied
from 20 to 60 nodes. The performance of the techniques is as
illustrated in the Figures 3-5.

Figure 3. Speed vs. Delay.

Figure 4. Speed vs. Delivery ratio.

Figure 5. Speed vs. Residual energy.

From the above results, it is found that the proposed
swarmFTCP outperformed LMIBCN. The observation of delay
incurred during the transmission of packet from source to
destination in Figure 3 revealed the fact that at lower speeds
performance of both techniques is almost the same. When
speed is gradually increased in steps of 5 m/s end-to-end-delay
also increased and attained a maximum at 15 m/s.
Subsequently there is a decrease in end-to-end-delay in both
techniques due to the mobility prediction in swarmFTCP and
interference calculation in LMIBCN. Delay incurred in
swarmFTCP is 13% less than that of LMIBCN. Figures 4 and 5
shows the delivery ratio and residual energy of SwarmFTCP
and LMIBCN techniques for different mobile speed scenario
respectively. The packet delivery rate is reduced with
increasing mobility due to increased link breaks. When the
speed increases, the links between two nodes often break,

followed by more packet losses and thus, fewer packets are
delivered to the destination. SwarmFTCP provides better
performance than LMIBCN due to its prediction capability and
packet delivery ratio is 43% greater than that of LMIBCN.
There occurred an increase in route failures as speed is
increased and hence the possibility of alternate routing will be
more. Therefore, residual energy of LMIBCN is 20% less than
that of swarm FTCP.

Figure 6. Nodes vs. Delay.

Figure 7. Nodes vs. Delivery ratio.

Figure 8. Nodes vs. Energy.

Based on number of nodes with constant transmission
range: Next the performance of swarmFTCP and LMIBCN
was analyzed by varying the number of mobile nodes from 50
to 200. Figure 6 shows the end-to-end delay of SwarmFTCP
and LMIBCN techniques for different number of mobile
nodes. There is an increase in delay detected because of
increase in number of nodes which increases total traffic load
and thus, the network becomes congested. This leads to more
packets in queues for a long time which causes the delay to
increase. However, swarmFTCP outperforms LMIBCN in
reducing the end to end delay of range 9 – 10%. The delivery
ratio of SwarmFTCP is 52% more than LMIBCN and residual
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energy of SwarmFTCP is 22% lesser than that of LMIBCN.
This is shown in Figures 7 and 8. Compared to LMIBCN the
delivery ratio of swarmFTCP is a bit high, which is due to its
ability to select a set of stable and least congested routes thus
having the lowest amount of packet loss and very few route
failures.

Figure 9. Range vs. Delay.

Figure 10. Range vs. Delivery ratio.

Figure 11. Range vs. Energy.

Based on transmission range: In this experiment, the
transmission range is varied from 250 m to 450 m. Since
routing through multiple hops will occur during low
transmission power, there is an increase in end-to-end delay.
But beyond the 250 m transmission range, the end to end delay
was very much reduced to a very lower level. When the
transmission range is highest, routing overhead is minimum
and at lowest transmission range routing overhead in
maximum. LMIBCN suffers a lot in larger transmission range
as more interference is rooted. It has been found from Figures
9-11 that there is high end-to-end delay, less packet delivery
ratio and less residual energy for LMIBCN. SwarmFTCP
provides better performance in different transmission ranges as
it incorporates mobility prediction for finding a stable path
which less power consumption and reduced interference.

SwarmFTCP has 14% less delay, 36% greater packet delivery
ratio and 22% higher residual energy than that of LMIBCN.

Conclusion
In this work, neural network based prediction model for
topology control in MANET that consists of three layers to
perform N- step prediction of object’s location is proposed.
This model is highly scalable and accurate. The proposed
method provides a technique not only for mobility prediction
but provides both a most reliable and a stable path for the
communication about the details of rehabilitation hospitals to
the patients without any interruption in the network. Based on
the interference, transmission power values of nodes and path
availability, the optimal path is selected for data transmission
using Ant Colony Optimization. Through simulation, it is
proved that the proposed technique reduces the packet drop,
delay and improves the packet delivery ratio and residual
energy. Future work may be done by increasing the step value
N in prediction of mobile nodes’ location to improve the
stability of path.
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