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Abstract

Background: Biological systems exhibit non-linear and spatiotemporal dynamics and structures even at
rest. Humans demonstrate a remarkable ability to generate accurate and appropriate motor behaviour
under many different and often uncertain environmental conditions. There are many motor movement
tasks like eye open and close conditions, hand movements, fist movement etc. Brain controls all motor
movement tasks. Electroencephalography (EEG) is a technique used to quantify the dynamics of
physiological systems using non-invasive physiological monitoring and clinical investigation. The mental
simulation of motor related tasks such as opening and closing of eye, left and right fist and fingers and
other motor executive brain regions are commonly cognitive nature of tasks requires analysis using EEG
motor movements.
Methods: To quantify and understand the dynamics of EEG motor movements tasks, we employed
robust Multiscale Permutation Entropy (MPE) analysis technique to distinguish Eye Open (EO) and
Eye-Closed (EC) conditions. Mann-Whitney rank test was used to find significant differences between
the groups and result were considered statistically significant for p-values<0.05. The Receive Operator
Curve (ROC) was also computed to find the degree of separation between the groups.
Results: The finding reveals that that frontal electrodes (F2, F3, F4, F5, F6, F7, F8) and front polar
electrodes gives the highest separations and significant results to distinguish the EEG Motor movements
tasks between eye open and eye closed tasks. The parietal (P3, P4), occipital (O1, O2) and central (C3,
C4) electrodes gives only significant results at various temporal scales. The extremely significant results
were obtained at F5, Fp1 followed by F1, F4, Fp2, F6 and F7. It was also found that frontal electrodes
give the highest significance results followed by parietal, occipital and central electrodes which imply
that these regions accordingly will help to distinguish these conditions from EEG motor movement
tasks. MPE give higher significance results and separation at all selected electrodes than MSE to
discriminate the brain states during EC and EO during the motor movement/imaginary tasks.
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Introduction
The brains’ dynamical activities are quantified using the
Electroencephalogram (EEG) a non-invasive technique which
provides both local and global spatiotemporal description of
the combined neuronal activities. The brain has non-linear and
non-stationary nature of data due to which the analysis of EEG
signals always remain as a challenging task [1].

The research also reveals that brain activities in form of
various tasks and brain pathologies such as Alzheimer disease,

epilepsy, dementia etc. are measured and analyzed using the
EEG signals. The theory of non-linear dynamics is used to
understand the non-linear behaviour and intrinsic nature of the
brain [2].

In the previous studies, analyzed the imagination of mental
tasks as left and right movement [3]. The reference electrodes
should be ideally silent during the electrical activity. Due to
noise components selected for reference electrode make hard to
take the good EEG feature to acquire the relevant mental
states. To classify the eye open and close, left or right motor
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imagery, the reference location should activate only when there
exists motor imagery and the activity remain stable during the
right and left imagery situations to differentiate the two classes.
Moreover, the cognitive activity and states of movements were
observed during different EEG frequency bands. The research
also reveals that different EEG rhythms mainly alpha (8-12
Hz) and beta (14-30 Hz) frequency ranges characterize the
brain activity of motor and sensory area during somatosensory
processing and voluntary movements [4]. The EEG rhythm
themselves are the product of synchronized activity within and
among the neural assemblies, thus it is assumed that changes in
EEG power reflect the underlying changes in neuronal
synchrony typically known as “task related” or “event related”
de-synchronization to illustrate the event related changes in
EEG power over the cortex.

The literature evidences show that a complex nature of
dynamics were observed during resting state EEG and EEG
motor movements tasks during which they compared healthy
volunteers with eyes open and closed conditions during
unchanging external stimulation in complete darkness [5-7].
The results show that the eyes open visual motor and
attentional systems were seen activated whereas the
somatosensory, visual, vestibular and auditory systems were
activated during eye closed states. They also observed that two
different mental activities such as “interoceptive” state
characterized by multisensory and imagination activity during
eye-closed and an “exteroceptive” state by ocular motor and
attention during eye open state.

To quantify the dynamics of EEG signals and to better
understand the complexity which vary before and during and
different brain pathologies and the seizures episodes, different
entropy measures have been discussed in the literature [8].
These entropy measures have the capability to identify the
complexity present in the EEG signals using computerized
approaches. Acharya et al. used different entropy features
(sample entropy, approximate entropy, phase entropy, Renyi’s
entropy, Shannon entropy and HOS entropies) to detect and
diagnose the epileptic seizure [8,9]. They observed that
combination of entropy features rather than signal entropy has
improved the classification accuracy.

Among the above mentioned classical entropic measures,
Permutation Entropy (PE) is more robust and reliable to
quantify the dynamics of highly complex nature of biological
signals, data length independence capability and even if the
time series perturbed to external noise. PE was initially
proposed by Bandt et al. to measure the irregularity of non-
stationary time series [9]. The purpose of using PE was to
compute the order relations between the values of a time series
rather than the values themselves. Many researchers compared
PE with the approximate entropy and sample entropy and
found that PE method has more simplicity, lower complexity in
computation without further model assumptions, and
robustness even in presence of dynamical and observational
noise [9-13]. Cao et al. employed PE to detect the epileptic
activities in the intracranial EEG signals recorded from three
patients suffered from the intractable epilepsy and it was

observed that PE drops after seizure. Nicolaou et al. employed
PE as feature for automated detection of epileptic seizure and
obtained higher sensitivity of 94.38% and specificity of
93.23% [14,15].

The physiological time series exhibits evident or structural
correlations over multiple temporal and spatial scales. Costa et
al. proposed Multiscale Sample Entropy (MSE) most
effectively used method to account the effects at multiple time
scales present in the complex time series [16]. An important
nature of EEG in its dynamics represents ‘complexity’, which
is characterized quantitatively by complexity analysis. Lempel
et al. developed the most popular complexity measure as LZ
complexity. Other prevalent complexity measures include
spectral entropy, approximate entropy and median frequency
where Lempel-Ziv (LZ) complexity measure C (n) can act as
an alternative tool for EEG analysis, since it is suitable to
characterize the development of spatiotemporal activity
patterns in high-dimensionality non-linear systems like heart
and brain. Hong et al. combined the LZ complexity with the
Continuous Wavelet Transform (CWT) and found that the new
method was more effective in bearing fault diagnosis.
Moreover, Approximate Entropy (AE) and Multiscale Entropy
(MSE) are used for measuring the regularity of time series in
fault diagnosis. Entropy based method require less time for
computation and are simple, thus gives good performance in
bearing fault diagnosis. Besides, single scale entropy methods
provide limited performance for complicated data, thus Aziz et
al. proposed new methods termed as Multiscale Permutation
Entropy (MPE) to calculate the entropy at multiple scales [17].
They observed that healthy subjects have higher complexity
than the pathological subjects which are consistent with the
previous findings of HRV, gait dynamics using entropy based
measures. Rathore et al. [55] used image segmentation
technique to detect and diagnose various conditions and
diseases. Abbsai et al. [56] used entropy based techniques to
study the gait dynamics. Hussain et al. [57] employed
multiscale permutation entropy for EEG analysis and to
distinguish the alcoholic subjects from control subjects.
Recently, Hussain et al. [58] employed the most robust Kd tree
algorithm based entropy measures to quantify the dynamics of
Electroencephalographic (EEG) signals to distinguish the
alcoholic subjects from that of control subjects. The results
reveal that healthy (non-alcoholic) subjects exhibit much
higher complexity than the alcoholic subjects at multiple
temporal scales. They also observed that parietal and central
probes exhibit highest significance results and separation
followed by occipital and frontal probes which shows that
these brain regions can help the clinicians and neurologists in
curing the patients suffering from alcoholism.

Methodology

EEG recordings
In the present study, the datasets for EEG motor movement
tasks comprising of baseline eye open and eye close were taken
from publicly available database of Physionet available at the
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link (http://physionet.org/pn4/eegmmidb/). EEG signals were
extracted from 17 electrodes-F2, F3, F4, F5, F6, F7, F8, Fp1,
Fp2, FC1, FC2, O1, O2, P3, P4, C3 and C4 complying with the
international 10-20 system and sampled at 160 HZ of one to
two-minute recording.

The data was acquired using BCI2000 system comprising of
109 subjects performing different motor/imagery tasks [18].
Subjects were asked to execute and imagine different tasks
while 64 channels of EEG signals were recorded from the
electrodes that were fitted along the scalp. Each subject
performed 14 experimental runs: two one-minute baseline runs
(one with eyes open, one with eyes closed), and three two-
minute runs of each of the four tasks as target appear on either
left or right of the screen with subjects open or close or
imagine open or close correspondence fist until target
disappear then relaxing the subject and target appear on top or
bottom of the screen with subjects open or close or imagine
open or close either both fists or both feet until target disappear
then relaxing the subject. In the present study, we have
extracted the data of only two experimental runs i.e. baseline
eye open and close for 50 subjects for both tasks i.e. 25
subjects from EC and 25 from EO conditions for electrodes F2,
F3, F4, F5, F6, F7, F8, Fp1, Fp2, O1, O2, C3, C4. In motor
movement/imaginary tasks, during non-changing external
stimulation, the attentional systems and ocular motor are
activated when the eyes are closed. While somatosensory,
visual, vestibular and auditory systems are activated when the
subjects closed their eyes. Moreover, during eye movements,
two mental state activities can be seen, the ‘interoceptive’ state
which is characterized by multisensory and imagination
activity is observed during the eye open condition.While
‘exteroceptive’ state can be characterized by interpreting and
attention of brain activation studies. Likewise, these conditions
will help to analyse the intrinsic dynamics of brains and to
make the either short or long term decisions.

Multiscale permutation entropy (MPE)
To quantify the dynamics and to extract the information from a
time series with special regard to its complexity, PE is
considered as most robust and fast method [9]. It is based to
count the ordinal pattern also called motifs that describe the up
and down in the dynamical systems. PE is computed based on
the relative frequencies of different motifs. PE in comparison
to Sample entropy and other entropy measures is most robust
to noise because it considers only the ordinal patterns as the
amplitude of the signal is not actually relevant. Moreover, to
study the dynamics of biological signals (e.g. EEG), PE is
considered as interesting by-product as it also implies
independence on choice of the reference electrodes [19].
Moreover, using PE, we don’t require the pre-processing and
normalization steps. Likewise, PE is invariant measure to
quantify the complexity of a time series by discerning the
relative changes of complexity from the limited data as well.
PE is computed using the concept of Shannon Entropy to
ordinal pattern analysis through estimation of the relative
frequencies of ordinal patterns taken from the time series. PE is
using an alternative way to measure the similarity among

patterns with respect to other types of complexity measures
like approximate and sample entropy. In regular time series,
there are lots of similar ordinal patterns; in contrast, the
occurrence of different patterns with similar frequency is an
indicative of high complexity [20].

Following steps are used to compute the MPE:

Step 1: Considered a discrete time series {Ta, a=1, 2, 3, 4,
…..,N}, the data points are averaged within non-overlapping
window of increasing length. The coarse-grained time series is
computed using the following equation.

Qj τ = 1 τ∑� = � − 1 �+ 1
�� �    1 ≤ b ≤ Nτ 1

Where τ represents the scale factor and length of each coarse-
grained series is equal to original time series divided by τ as
shown in the following Figure 1.

Figure 1. Coarse grain procedure.

Step 2: The permutation entropy is computed using the
following procedure:

Consider a coarse-grained time series {Qa, b=1, 2, 3… M},
which is embedded to m dimensional space.

Qj=(q (b), q (b+L), …. , q (b+(m-1) L)) (2)

Where m is embedding dimension and L is time delay. For
each b, m dimensional number of real value Qb=(q (b), q (b
+L), …. , q (b+(m-1) L) can be arranged in increasing order.

(q (b+(b1-1) L ≤ q (b+(b2-1) L, …. ≤ q (b=(bm-1) L) (3)

To uniquely map any vector Qb onto (b1, b2, b3…, bm) we
require m! permutations of m distinct symbols (1, 2, 3,…., m).
Consider the probability distribution for distinct symbols (S1,
S2, S3 … Sk), where k ≤ m!, permutation entropy for coarse-
grained time series defined as Shannon entropy is computed as:

Hp m = −∑a = 1
k SilnSi  4

Where Sb=1/m!, Hp (m) attains maximum value of ln (m!).

For m different samples, there will be m! possible ordinal
patterns, π, which is called ‘motif’. For each single motif πj, let
f (πj) denotes its frequency of occurrence in time series. Thus,
relative frequency is:
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�(��) = �(��)� −�+ 1 5
For fixed embedding dimension m>2 and fixed time-lag L=L ̃,
PE is defined as:

� �, � = −∑��
�! �(��) ���2�(��) 6

Where the sum runs over all m! motif π. The maximum value
of H (m) is log2 (m!) this implies that all motifs have equal
probability. The smallest value of H (m) is zero indicating a
very regular time series i.e., it repeats only with some basic
motif.

Table 1. Related pairs of hypothesis tests.

Parametric tests (means) Non-parametric tests (medians)

1-sample t test 1-sample Sign, 1-sample Wilcoxon

2-sample t test Mann-Whitney test

One-Way ANOVA Kruskal-Wallis, Mood’s median test

Factorial DOE with one factor and one blocking variable Friedman test

Non-parametric test
Nonparametric tests are like a parallel universe to parametric
tests. Table 1 shows related pairs of hypothesis
tests that Minitab statistical software offers [21].

Non-parametric procedures based on no or few assumptions
about shape and parameters, for different analysis type’s
different non-parametric test can be applied e.g. for two
dependent samples, Wilcoxon signed-rank test is applied, if
data contain more than two independent sample then Kruskal-
Wallis test is used furthermore to estimate the degree of
association between two quantitative variables Spearman’s
rank correlation procedure can be used. A popular non-
parametric test to compare outcomes between two independent
groups is the Mann Whitney U test. The Mann Whitney U test,
sometimes called the Mann Whitney Wilcoxon Test or the
Wilcoxon Rank Sum Test, is used to test whether two samples
are likely to derive from the same population. In present work
Mann-Whitney test was applied. It is used when data of both
groups is taken from same individual. In our case both groups
with EC and EO condition are taken from same individual
during EEG motor movement tasks. The Mann-Whitney test,
also called the Wilcoxon rank sum test, is a non-parametric test
that compares two unpaired groups. To perform the Mann-
Whitney test, Prism first ranks all the values from low to high,
paying no attention to which group each value belongs. The
smallest number gets a rank of 1. The largest number gets a
rank of n, where n is the total number of values in the two
groups. Prism then averages the ranks in each group, and
reports the two averages. If the means of the ranks in the two
groups are very different, the P value will be small. Moreover,
you can’t interpret a P value until you know the null hypothesis
being tested. For the Mann-Whitney test, the null hypothesis is
that the distributions of both groups are identical, so that there
is a 50% probability that an observation from a value randomly

selected from one population exceeds an observation randomly
selected from the other population [22].

Results
The entropy values are computed over multiple temporal scales
as shown in the Table 2 using complexity based measures MSE
and MPE to distinguish the EC and EO conditions from EEG
motor movements signals. Overall, the MPE gives highest
separations and significance results than MSE.

Using MSE, very high significance results were obtained at
electrode F2 (P-value 0.0004), followed by Fp2 (P-value
0.0006), Fp1 (P-value 0.0007). The high significance results
were obtained at electrodes F6 (P-value 0.0018), followed by
F4 (P-value 0.0024), F8 (P-value 0.0028), F5 (P-value 0.0031),
F3 (P-value 0.0043), O1 (P-value 0.0056), P4 (P-value
0.0066), O2 (P-value 0.0071) and P3 (P-value 0.009).
Moreover, the electrodes C3 (P-value 0.0268), C4 (P-value
0.0398), and F7 (P-value 0.053) also gives the significant
results to distinguish these conditions.

Using MPE, very higher significance results were obtained at
electrodes F5 (P-value 0.00001) followed by Fp2 (P-value
0.000028), F2 (P-value 0.0001), Fp2 (P-value 0.00013), F4 (P-
value 0.00017). Moreover, higher significance results were
obtained at electrodes F8 (P-value 0.0012) followed by F3 (P-
value 0.0022). Likewise, significance results were obtained at
electrodes P4 (P-value 0.0163), followed by P3 (P-value
0.0179), O1 (P-value 0.023), O2 (P-value 0.053), C3 (P-value
0.523), and C4 (P-value 0.0665).

The mean ranks were computed for selected electrodes in both
EO and EC conditions. Among all the electrodes, EC have
higher ranks than EO showing higher complexity in depicted
scales. In EC condition, the highest ranks were found in
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electrodes F2 (27.08) followed by Fp2 (26.88), Fp1 (26.78), P3
(26.65), O2, F6 (26.30), F8, F4 (26.05).

Table 2. Maximum significant separation level with p-values at time scales 1-20 using MSE and MPE profiles for EEG motor movement data with
baseline EC and EO.

Probe Mean rank Mean Median Min. Max. Optimal P-value 

EO EC EO EC EO EC EO EC EO EC MSE MPE Scale

F2 13.93 27.08 1.55 1.89 1.5 1.88 0.87 1.33 2.2 2.34 0.0004 0.0001 3

F3 15.2 25.8 1.7 1.92 1.68 1.96 1.28 1.13 2.26 2.43 0.0043 0.0022 18

F4 14.95 26.05 1.67 1.9 1.6 1.92 1.3 1 2.32 2.44 0.0024 0.00017 18

F5 15 26 1.58 1.82 1.6 1.84 1.14 1.18 2.31 2.4 0.0031 0.00001 15

F6 14.7 26.3 1.58 1.86 1.58 1.96 1.12 0.83 2.22 2.39 0.0018 0.0007 15

F7 16.9 24.1 1.5 1.7 1.4 1.72 1.02 1.07 2.21 2.22 0.053 0.0007 10

F8 14.95 26.05 1.4 1.76 1.34 1.82 0.78 1.01 2.24 2.24 0.0028 0.0012 11

FP1 14.23 26.78 1.16 1.61 1.09 1.53 0.74 0.82 2.06 2.31 0.0007 2.81E-05 16

FP2 14.13 26.88 1.15 1.62 1.07 1.6 0.74 0.76 1.96 2.27 0.0006 0.00013 14

O1 15.95 25.05 1.82 1.94 1.82 1.99 1.18 1.34 2.36 2.32 0.0056 0.023 2

O2 14.7 26.3 2.01 2.02 2.03 2.1 1.29 1.29 2.43 2.44 0.0071 0.053 12

P3 15.35 26.65 1.78 1.88 1.78 1.92 1.24 1.48 2.32 2.33 0.009 0.0179 2

P4 15.5 25.5 1.76 2.04 1.77 2.05 0.98 1.7 2.26 2.34 0.0066 0.0163 3

C3 15.65 25.35 1.87 2.02 1.9 2.02 0.98 1.3 2.38 2.41 0.0268 0.0523 6

C4 15.45 25.55 1.89 2.1 1.95 2.18 1.31 1.41 2.36 2.43 0.0398 0.0665 6

Using MSE, the means, median, minimum and maximum
values at appropriate scales which optimal significant results
were obtained also computed as depicted in the Table 2. The
results also reveal that higher statistical differences are seen in
those conditions where more optimal (minimal) significant
results were obtained.

Figure 2. Receiver Operator Curve (ROC) at Electrode F2.

Area under the curve (AUC)
ROC is used to visualize and analyze system behaviour using
two-dimensional sensitivity (True positive rate-TPr) and

specificity (False positive rate-FPr) value plot along y-axis and
x-axis respectively. The area under the curve shows the
separation among the groups the maximum value of AUC was
obtained at F5 (AUC=0.90750) electrode on which extremely
significant results (p-value 0.00001) were also obtained
followed by the electrodes as depicted in the Figure 2.

Discussion
This aim of this research was to distinguish the EEG motor
movement data with baseline eye open and close. Table 2
depicts the mean ranks and significant results to discriminate
the eye open subjects from that of eye closed during motor
movements using Mann Whitney Ranksum test. The MPE in
comparison to MSE shows high significant results to
distinguish these conditions at various temporal scales. The
results are consistent with the previous studies that complexity
degraded during the pathological condition [23-25]. MPE
maximum separation to distinguish these conditions; the
extremely significant results were obtained at frontal electrodes
F5 (P-value 0.0001), Fp2 (P-value 0.000028). The very
significant results were obtained at electrodes F1 (P-value
0.0001), F4 (P-value 0.0001), Fp2 (P-value 0.00013), F6 and
F7 (P-value 0.0007). The highly significant results were
obtained at electrodes F8 (P-value 0.0012), F3 (p-value
0.0022). The electrodes P4 (P-value 0.0163), P3 (P-value
0.0179), O1 (P-value 0.023) gives also significant results.
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However, the electrodes O2 (P-value 0.053), C3 (P-value
0.0523) and C4 (P-value 0.0665) gives only significant results.

In this study, we discussed the EEG Motor Movement/Imagery
data comprising of Baseline Eye open and Eye close tasks
using MSE which can assess the signal complexity and
compute the regularity of coarse-grained sequence at different
time scales. MSE as proposed by Costa was used for small data
of one to two-minute EEG recording of Motor Movement has
important advantage with other traditionally used non-linear
techniques such as L1, D2 as it can be applied relatively noisy
and short physiological time series and model independent
[26]. Moreover, MSE can be applied to measure complexity of
physiological and pathological subjects on different time scales
[26-29].

Over the past few years, the complexity of time series from
biological signals such as brain and heart have been
extensively studied using the permutation entropy and related
techniques. The reasons to use these measures are manifold.
Almost all the biological systems exhibit the complex spatio-
temporal dynamics and structures even at rest [30]. For
example, the brain spontaneous activities encompass a set of
dynamically switching states. These are re-edited continuously
across the cortex in a non-random way [31-34]. Likewise,
other pathologies such as epileptic seizures are typically
characterized by the ordered sequences of the symptoms.
Permutation entropy is more robust to capture the structure
dynamics of both healthy and pathological states. Moreover, all
the biological systems exhibit the linear and non-linear
dynamics [35,36] are perturbed to external and observational
noise. The analysis of these systems requires methods that are
robust and model free. Contrary to the most non-linear
measure, the permutation entropy is more robust to noise
sources and artifacts [9]. Finally, most of the clinical
application requires the algorithms which are computationally
reliable for relative short and noisy time series. The existing
techniques require long, stationary and noiseless data, while
the permutation entropy on the other hand extremely reliable
for such type of time series and require no further steps for pre-
processing and tuning the parameters etc. Based on these facts,
the permutation entropy derived from the original Bandt et al.
method [27-29] were most extensively used to study the
dynamics of brain electrical activity such as epilepsy research,
neuroscience, and anaesthesiology [27-29,37-50]. Hussain et
al. recently compared the SE with symbolic time series to
investigate the dynamics of EEG signals with seizure (ictal
interval) and without seizures (interictal intervals including
both focal and non-focal signals) and observed that entropy
drops for seizures signals [51-54].

Moreover, from the results analyzed above, it can be inferred
that MSE profiles from time scales τ ≥ 10 reveal no significant
differences to discriminate the EEG motor movement eye open
and close tasks however. While MPE gives the significant
results in most of the electrodes at time scale τ ≥ 10 at
electrodes located in frontal (F2, F3, F4, F5, F6, F7, F8,),
posterior brain region (P3, P4, O1, O2) and central region (C3

and C4), frontpolar (Fp1 and Fp2) and front central (FC1 and
FC2) region.

Likewise, the ROC curves measures are used to classify the
motor movement tasks at various electrodes. The highest
separation was obtained at frontal electrode F5 (AUC=0.9075),
F2 (AUC=0.8562), F4 (AUC=0.8475), F7 (AUC=8125), F8
(AUC=0.80000) and F3 (AUC=0.7830). The other occipital
and central electrodes show minimum separation.

Conclusion and Future Work
Motor control is defined as the process of restricting the output
of the motor nervous system so that meaningful and
coordinated behaviour ensues. Contralateral brain hemispheres
control human limbs. The Event-Related De-synchronization
(ERD) occurs predominantly over the contralateral
hemispheres due to the physical movement or motor imaginary
movements of eyes and hands. Moreover, Event-Related
Synchronization (ERS) is also associated with contralateral
motor areas. The aim of this study is to investigate the
dynamics of EEG signals with motor movement tasks with EC
and EO conditions. We explored that how the neural activity is
coordinated across different spatial and temporal scales and to
determine the phenomenon of ERD/ERS related to motor
imagery is stronger in which parts of brain. Likewise, we
investigated the dynamics of EEG motor movements tasks
using PE to quantify the dynamics in motor tasks specially in
helping disabled individuals by providing a new channel of
communication with the external environment and offering a
feasible tool to control artificial limbs. Depending on the type
of motor imagery, different EEG patterns can be obtained.
Activation of hand area neurons either by preparation for a real
movement or by imagination of the movement is accompanied
by a circumscribed Event-Related De-synchronization (ERD)
focused at the hand area. In the present study, we have applied
MPE to distinguish the Eye open to Eye closed tasks during
EEG Motor Movement/Imagery. MPE is a powerful tool to
quantify the dynamics of complex time series that compute the
probability distribution and complex system states with
relevant encoded information. The results reveal that mean
ranks of EC tasks higher found higher than the EO condition at
various temporal scales which shows that EC tasks show
higher complexity than EO. The complexity decreases when
the individual open their eyes. To differentiate the differences
among the tasks, Mann-Whitney test was applied that gives
significant differences among these groups at different
electrodes based on the international 10-20 system. The highest
accuracy and separation was obtained at Frontal electrodes
followed by front polar, parietal, occipital and central
electrodes. The present study is focused on motor movement
tasks with eye open and closed conditions, however for future
research we will quantify the dynamics and neural activities of
other motor movement/imaginary tasks such as hands, fists etc.
with respect to age and gender as well.
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