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Abstract

Klebsiella pneumoniae is one of the most important opportunistic enteric bacteria and is a major cause
of pneumonia and urinary tract infection. Serotype capsules of K1 and K2 can cause intense diseases.
Acquisition of plasmid that codes the production of ESBLs confers on K. pneumoniae resistance to
number of broad spectrum antibiotics posing a global public health problem. Integron is one of the
important factors of multi resistance in gram negative microorganism’s especially intestinal bacteria.
The magA gene rmpA gene was studied in 90 isolates of K. pneumoniae from different clinical cases in
Shahrekord city, Iran. The frequency of resistance genes qnr, sul 1, tetB, tetA and aac (3) IIa at the
presence of specific primers were examined and all resistant isolates were tested for detection of sul1,
sul2, sul 3 and int1 genes using special primers. Of the 90 isolates, 13 had serotype K1A with
redundancy of 14.44% and 15 cases had serotype K2A with the redundancy of 16.66%. rmpA gene was
observed in 10 isolates the redundancy of 11.11%. In this study 33 isolates resistance to cotrimoxazole,
aren’t finding sul1 gene in 15 isolated cases, sul2 gene in 20 isolated cases, sul3 gene in 2 isolated cases,
respectively. Also there were 27 demonstrating int1 genes for Cotrimoxazol. The study has revealed that
serotype K1 is one of the most important serotypes of K. pneumonia. Also there seems to be a strong
relationship between presence of Integron and increased resistance to different antibiotics.
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Introduction
Klebsiella pneumoniae is a gram-negative, aerobic, non motile
bacillus and is a common cause of a wide range of infections in
humans and animals [1,2] and one of the most common enteric
bacteria responsible for up to 10% of all nosocomial infections
and also involved in pneumonia and urinary tract infections
causing severe morbidity and mortality [1,3]. Recently, a
highly invasive K. pneumoniae causing primary liver abscesses
in humans has also been reported [4-6]. These invasive,
abscess-forming strains of K. pneumoniae are associated with
the so-called hypermucoviscosity (HMV) phenotype, a
bacterial colony trait identified by a positive string test [7-9].
The HMV phenotype is seen in K. pneumoniae expressing
either the capsular serotypes K1 or K2. K1 serotypes of K.
pneumoniae have 2 potentially important genes, rmpA, a
transcriptional activator of colanic acid biosynthesis, [10] and
magA, which encodes a 43-kD outer membrane protein [7]. K2
serotypes of K. pneumoniae also have rmpA but do not have
magA. Serotype capsules of K1 and K2 can cause intense
diseases and based on studies of these serotypes, it has been
revealed that magA gene, related to Hypermocoviscosities and
rmpA gene, in charge of positive synthesis of outside-capsule

polysaccharide, are both useful tools in knowing such
serotypes. Most K. pneumoniae isolates have a chromosomally
encoded SHV-1 β-lactamase [11]. Since 1983, plasmid-
encoded extended-spectrum β-lactamases (ESBLs) derived
from the TEM and SHV families have been extensively
reported in Enterobacteriaceae, especially in Klebsiella spp.
[12,13].

Emergence and spread of multidrug resistant K. pneumoniae,
specifically the ESBL producing strains, is often responsible
for the failure of antibiotic treatment in hospital settings [14].
In many countries, however, the presence of resistance to
Trimethoprim-sulfamethoxazole can lead to treatment failure
in cases of UTIs [15]. Sulfonamide resistance in gram-negative
bacilli generally arises from the acquisition of dihydropteroate
synthase (DHPS) genes in integrons that are not inhibited by
the drug [16]. Currently, three different types of DHPS genes
(sul1, sul2, and sul3) are known [15]. The sul1 gene is found
linked to other resistance genes in class 1 integrons and on
large conjugative plasmids [17], while sul2 is usually located
on small nonconjugative plasmids [18], large transmissible
multi-resistance plasmids [15], or through insertion element
common region (ISCR2) element [19]. Although rare, sul3, a
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plasmid-borne sulfonamide resistance gene, is also present
[17].

Recent studies have shown that mobile and mobilizable DNA
elements, such as integrons, play an important role in the
development and dissemination of antibiotic resistance
[20-22]. Integrons are defined as site-specific recombination
systems that are capable of integrating and expressing open
reading frames contained in modular structures called mobile
gene cassettes [23]. Different classes of integrons are
characterized by sequence differences in the intI gene encoding
an integrase. Class 1 integrons possess two conserved
segments (CSs), the 5'-CS and the 3'-CS, separated by a
variable region, which includes integrated antibiotic resistance
gene cassettes of different lengths, arrangements, and
sequences [23]. In the clinical environment, three main groups
or classes of integrons associated with antibiotic resistance
have been described. Class 1 integrons are most frequently
found in clinical isolates of Gram-negative bacteria [22].
Although several literatures studied sul and/or dfr genes in
relation to class 1 integron in E. coli [15,24-26], there are
limited reports investigating the antigenic capsules of K.
pneumoniae, the phenotypic genotypic antibiotic resistance
patterns in K. pneumoniae and sul genes in relation to class 1
integrons and sul genes in Klebsiella in Iran. Therefore, in this
present study, we investigated the genotypic and phenotypic
antibiotic resistance patterns of strains of K. pneumoniae
isolated from clinical samples in Iran

Materials and Methods

Bacterial strains and identification
We examined 90 K. pneumoniae clinical isolates from hospitals
of Shahrekord, Iran. Clinical isolates were mostly from urine,
blood culture, eye secretion, trachea and wound. Prior to
molecular-serotyping, all clinical isolates were biochemically
identified by conventional bacteriology tests as detailed
previously [27].

The PCR method was used to detect the 16S–23S internal
transcribed spacer unit of K. pneumoniae subsp. pneumoniae,
facilitating identification of this subspecies, as described
previously [28]: F: ATTTGAAGAGGTTGCAAACGAT and
R: TTCACT CTGAAGTTTTCTTGTTTC (amplicon size: 130
bp). Cycling conditions were as follows: Initial denaturation at
94°C for 5 min; 35 cycles of 94°C for 1 min, 58°C for 1 min,
and 72°C for 1 min followed by a final extension at 72°C for 7
min. K. pneumoniae ATCC13883 was used as positive control.

Antimicrobial susceptibility testing
The antibiotic susceptibility was determined by disk diffusion
method on Mueller-Hinton agar plates (Merck, Darmstadt,
Germany) as recommended by the Clinical Laboratory
Standards Institute (CLSI) [29]. The disks containing the
following antibiotics were used (Padtan-Teb, Iran): amoxiciline
(10 µg), amikacin (30 µg), kanamycin (30 µg), tetracycline (30
µg), nalidixic acid (30 µg), co-trimoxazole (25 µg),

ciprofloxacin (5 µg), cephalothin (30 µg), norfloxacin (10 µg),
ceftriaxone (30 µg), nitrofurantoin (10 µg), imipenem (10 µg),
cefepime (30 µg), and gentamicin (10 µg). E. coli ATCC
25922 was used as quality control for antimicrobial
susceptibility test.

Polymerase chain reaction assay
The DNA template was extracted using phenol and chloroform
method. The total DNA was measured at 260 nm optical
density according to the method described by Sambrook and
Russell [30]. The reverse and forward primers, size of product
and PCR programs (temperature and volume) as previously
published used for the detection of capsular K1 and K2
serotypes in K. pneumoniae in this study are presented in Table
1 [28]. In addition, The primers, size of product and PCR
conditions as previously published used for the detection of
resistant genes and sul genes of K. pneumoniae are presented
in Table 2 and Table 3, respectively [15,31-34]. Reference
strains of K. pneumoniae AY762939 and K. pneumoniae
D21242 were used as positive controls for PCR reactions of K1
and K2 serotypes respectively.

Table 1. Primers used for genes in K. pneumoniae.

Gen
e

Primer
name

Primer
Sequence
(5'-3')

Size of
produc
t (bp)

PCR
program

PCR

volume (50 µl)

Refe
renc
e

K1A aac(3)-
IV

(F)
GGTGCTCTTT
ACATCATTGC

(R)
GCAATGGCC
ATTTGCGTTA
G

1283

1 cycle:

95°c
------------
10 min.

34 cycle:

95°c
------------
30 s

58°c
------------
60 s

72°c
------------
90 s

1 cycle:

72°c
------------ 5
min

5 µl PCR buffer
10X

2.5 mm Mgcl2

200 µM dNTP
(Fermentas)

0.5 µm of each
primers F & R

2 U Taq DNA
polymerase
(Fermentas)

3 µl DNA
template

[28]K2A sul1

(F)
GACCCGATAT
TCATACTTGA
CAGAG

(R)CCTGAAGT
AAAATCGTAA
ATAGATGGC

641

rmp
A

blaSH
V

(F)
ACTGGGCTA
CCTCTGCTTC
A

(R)
CTTGCATGAG
CCATCTTTCA

536

F- Forward; R- Reverse

Table 2. Primers and PCR conditions of resistant genes of K.
pneumoniae.

Antibi
otic

Resist
ant
gene

Sequence Size
(bp) Anealing PCR program Refer

ences

Tetrac
ycline tetA

GTGAAACC
CAACATAC
CCC

GAAGGCAA
GCAGGATG
TAG

888 55

1 cycle:

94°c ------------ 5 min

cycle: 30

49°c ------------ 15 s

[31]
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55°c ------------ 60 s

72°c ------------ 60 s

1 cycle:

72°c ------------ 5 min

Tetrac
ycline tetB

CCTTATCAT
GCCAGTCT
TGC

ACTGCCGT
TTTTTCGC
C

774 55

1 cycle:

95°c ------------ 5 min.

30 cycle:

95°c ------------ 30 s

55°c ------------ 60 s

72°c ------------ 60 s

1 cycle:

72°c ------------ 5 min

Fluoro
quinol
one

qnr

ATTTCTCAC
GCCAGGAT
TTG

GATCGGCA
AAGGTTAG
GTCA

516 55

1 cycle:

95°c ------------ 5 min.

30 cycle:

95°c ------------ 30 s

55°c ------------ 60 s

72°c ------------ 60 s

1 cycle:

72°c ------------ 5 min

[32]

Genta
micin

aac(3)
IIa

CGGAAGG
CAATAACG
GAG

TCGAACAG
GTAGCACT
GAG

740 55

1 cycle:

94°c ------------ 5 min

cycle: 30

49°c ------------ 15 s

55°c ------------ 60 s

72°c ------------ 60 s

1 cycle:

72°c ------------ 5 min

[31]

Sulfon
amide Sul1

CGGCGTG
GGCTACCT
GAACG
GCCGATCG
CGTGAAGT
TCCG

433 65

1 cycle:

94°c ------------ 5 min.

34 cycle:

94°c ------------ 60 s

65°c ------------ 60 s

72°c ------------ 90 s

1 cycle:

72°c ------------ 8 min

[33]

Table 3. Primers used for sul genes.

Gene Sequence (5’–3’) Annealing
temp (°C)

Size of
product
(bp)

Referenc
e

Sul 1
F: CGGCGTGGGCTACCTGAACG

65 433 [15]
R: GCCGATCGCGTGAAGTTCCG

Sul 2

F:
GCGCTCAAGGCAGATGGCATT

65 293 [15]
R:
GCGTTTGATACCGGCACCCGT

Sul 3
F: GCCTATGCATCTACACAATC

65 750 [34]
R: TGAGAAATGGACAATGTCCG

Int1 F: CAGTGGACATAAGCCTGTTC 53 160 [34]

R: CCCGAGGCATAGACTGTA

The 2% agarose gel in TBE buffer was used for PCR products
separation. Gels were run at a constant voltage of 100 V for 1
hour, stained in 2 μg/ml ethidium bromide for 10 minutes and
photographed under UV by Gel-Document. The expected PCR
products for 16S–23S, Capsular K1, K2 and rmpA were 130,
1283, 641 and 537 base pair (bp) in length, respectively.

Results

Serotyping and antimicrobial susceptibility patterns
of K. pneumonia
During the study period, a total of 90 K. pneumonia clinical
isolates, were collected. The molecular serotyping was
performed and showed in Table 4. Among 90 K. pneumonia
clinical isolates, 13 had serotype K1A with redundancy of
14.44% and 15 cases had serotype K2A with the redundancy of
16.66%. rmpA gene was observed in 10 isolates the
redundancy of 11.11% (Figure 1 and Figure 2). Of the total 90
K. pneumonia clinical isolates, 55 were collected from females
and 35 isolates were from males. There was widespread
resistance of the isolates to Amoxicillin 87.8%, Cephalothin
53.3%, Kanamycin 45.5%, Tetracycline 43.3%, Ceftriaxon
41.1%, Nitrofurantoin 41.1%, Cotrimoxazole 36.7%, Amikacin
32.2%, Cefepime 34.4%, Gentamicin 26.7% (Table 5).

Table 4. Serotype K1, K2 and rmp isolates from samples.

Isolate source 165rRNA K1A k2A RmpA

urine (N= 76) 76 11 12 10

Blood culture (N= 5) 5 2 1 0

Eye secretion (N=
5)

5 0 2 0

Wound (N= 2) 2 0 0 0

Trachea (N= 2) 2 0 0 0

Total (N= 90) 90 (100%) 13 (14.44%) 15 (16.66%) 10 (11.11%)

Table 5. Antimicrobial resistance profiles of K. pneumoniae isolates
against 90 antimicrobial agents.

Antimicrobial
agent

Resistant Intermediate
resistant Susceptible

Number % Number % Number %

Amoxicillin 88 97.8 1 1.1 1 1.1

Nalidixic acid 22 24.4 8 9 60 66.6

Nitrofurantoin 37 41.1 22 24.5 31 34.4

Imipenem 4 4.4 2 2.2 84 93.4

Cefepime 31 34.4 3 3.3 56 62.2

Tetracycline 39 43.3 17 18.8 34 37.9

Co-trimoxazole 33 36.7 2 2.2 55 61.1
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Ciprofloxacin 6 6.7 4 4.4 80 88.9

Kanamycin 41 45.5 26 28.9 23 25.6

Ceftriaxone 37 41.1 5 5.5 48 53.4

Cephalothin 48 53.3 6 6.7 36 40

Norfloxacin 15 16.7 3 3.3 72 80

Amikacin 29 32.2 4 4.5 57 63.3

Gentamicin 24 26.7 1 1.1 65 72.2

Figure 1. Result of the PCR Assay for Identification of 16S rRNA K.
pneumoniae. M: DNA size ladder 100 bp (Fermentas), number 1:
reference strain for 16S rRNA K. pneumoniae; number 2: negative
control; number 3 and 4: positive samples.

Distribution of Klebsiella pneumonia antimicrobial
resistance pattern and antibiotic resistance genes
The PCR Assay Result for resistance genes of K. pneumoniae
is presented in Figures 3-5 and the frequency of genes reported
to tet A 79.48%, tet B 64.10%, sul1 21.21%, aac (3) IIa
83.33%, qnr in the antibiotic nalidixic acid 18.18%,
Norfloxacin in three isolates (20%) and ciprofloxacin 16.66%
(Table 6). The Antimicrobial resistance pattern of K.
pneumoniae isolates are presented in Table 7.

Figure 2. Result of the PCR Assay for Identification of K.
pneumoniae Capsular K1, K2 and rmpA. M: DNA size ladder
100 bp (Fermentas), number 1: negative control; number 2:
number 2 and 3: positive samples.

Table 6. Distribution of antibiotic resistance genes in K. pneumoniae
strains isolated.

Gene Antimicrobial
agent

Resistance by
disc

Resistance by
PCR

tet A Tetracycline 39 (43.30%) 31 (79.48%)

tet B Tetracycline 39 (43.30%) 25 (64.10%)

Qnr Nalidixic Acid 22 (22.40%) 4 (18.18%)

Qnr Norfeloxacine 15 (16.70%) 3 (20%)

Qnr Ciprofloxacin 6 (6.70%) 1 (16.16%)

sul 1 Sulfonamide 33 (36.70%) 15 (45.45%)

aac (3)Iia Gentamycine 24 (26.70%) 20 (83.33%)

Table 7. Antimicrobial resistance pattern in K. pneumoniae isolates.

Isolate
Number of
Multidrug-
Resistant

Resistance pattern

2 7 IPM / FEP / CP/ CRO / AN / GM

3 11 FM , IPM , FEP, TE , SXT, CP , CRO , CF,
NOR , AN , GM

4 7 AM , FEP, K , CRO , CF, AN , GM

5 4 AM , TE , SXT, CF,

6 9 FM , AM , FEP, K , CRO , CF, NOR , AN , GM

7 6 FM / AM/ CRO / CF / AN / GM

8 9 K / FEP / FM / AM / CRO / CF / AN / GM /
NOR

9 1 NA , IPM , FEP, TE , SXT, CP , K , CRO , CF,
NOR , AN , GM

10 7 FM / AM / K/ CRO/ CF / GM / SXT

11 5 FM / AM / CF / TE / NOR

12 7 K / AM / CF / CRO / GM / FEP / AN

13 3 TE / AM / CF

14 8 FM , AM , FEP, TE , K , CRO , CF, NOR ,
AN , GM

15 2 FM , NA , IPM , FEP, SXT, CP , CRO , NOR ,
AN , GM

16 7 CF/K/AM/GM/CRO/FEP/AN

17 13 FM, AM , NA , IPM , FEP, TE , CP , K , CRO ,
CF, NOR , AN , GM

18 10 FM//CF/K/AM/GM/CRO/FEP/AN/TE/NA

19 4 AM/TE/NA/SXT

20 3 AM/FM/SXT

21 5 AM/K/SXT/TE/NA

22 8 FM/AM/SXT/TE/NA/NOR/CF/CRO

23 8 FEP/FM/AM/SXT/TE/NA/CF/CRO

24 3 K/FM/AM

25 4 K/AM/SXT/NA

26 7 K/AM/FEP/CF/CRO/GM/AN
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27 7 AM/FEP/CF/CRO/FM/SXT/NA

28 7 AM/FEP/CF/CRO/FM/SXT/NA

29 4 AM/CF/SXT/TE

30 8 AM/CF/K/AN/FEP/CRO/GM/NOR

31 9 K/AM/FM/CF/AN/FEP/CRO/GM/SXT

32 8 K/AM/CF/AN/FEP/CRO/GM/SXT

33 7 K/AM/CF/AN/FEP/CRO/GM

34 9 K/AM/CF/AN/FEP/CRO/GM/TE/NOR

35 8 K/AM/CF/AN/FEP/CRO/GM/SXT

36 10 NA/K/TE/AM/CF/FEP/CRO/NOR/IPM/CP

37 9 NA/K/TE/AM/CF/CRO/NOR/CP/SXT

38 4 AM/NA/K/FM

39 4 AM/K/TE/SXT

40 4 AM/K/TE/FM

41 4 AM/FM/SXT/AN

42 3 TE/AM/FM

43 9 FM/K/AM/AN/CF/CRO/NOR/FEP/GM

44 4 AM/AN/TE/SXT

45 6 TE/CF/AM/AN/SXT/NA

46 3 FM/TE/AM

47 4 TE/AM/NA/SXT

48 8 TE/AM/SXT/K/FM/CRO/CF/FEP

49 3 AM/SXT/CF

50 4 TE/AM/FM/NA

51 8 K/CF/TE/AM/CRO/FEP/AN/GM

52 4 K/AM/AN/FM

53 11 K/AM/NA/CF/TE/CRO/FEP/SXT/IPM/CP/NO
R

54 8 AN/K/AM/CF/TE/CRO/FEP/GM

55 5 FM/AM/TE/FEP/NA

56 6 CF/AM/NA/AN/CP/NOR

57 4 TE/AM/FM/SXT

58 10 K/CP/NOR/TE/AM/SXT/CF/NA/CRO/IPM

59 6 K/TE/FM/AM/SXT/NA

60 9 CF/K/TE/FM/AM/AN/FEP/CRO/GM

61 5 CF/TE/FM/AM/SXT

62 8 TE/AM/AN/K/CF/FEP/CRO/GM

63 5 AM/K/CF/FEP/CRO

64 5 AM/K/CF/CRO/SXT

65 7 K/AM/CF/CRO/FEP/AN/GM

66 5 AM/CF/CRO/TE/SXT

67 3 AM/TE/SXT

68 3 AM/FM/SXT

69 7 K/AM/CF/CRO/FEP/AN/GM

70 6 AM/CF/CRO/FEP/FM/SXT

71 4 AM/CF/SXT/TE

Figure 3. Result of the PCR Assay for resistance genes of K.
pneumoniae. M: DNA size ladder 100 bp (Fermentas), number
1: negative control; number 2 and 3: positive samples and
positive control; number 4 and 5: negative samples.

Prevalence of sulfonamides resistance-encoding sul
genes and their relatedness to class 1 integrons
In this study 33 isolates resistance to cotrimoxazole, aren’t
finding sul1 gene in 15 isolated cases, sul2 gene in 20 isolated
cases, sul3 gene in 2 isolated cases, sul1 and sul2 gene in 2
isolated cases, sul1 and sul3 gene in 1 isolated cases and sul1
and sul2 and sul3 gene in 15 isolated cases, respectively.
Overall the most prevalent sul gene was sul2, found in 20/33
(60.60%) strains, followed by sul1 15/33 (45.45%) and sul3
2/33 (6.06%) (Table 8). Also there were 27 demonstrating int1
genes for cotrimoxazol. The sulfonamides resistance-encoding
sul 1 genes in relation to class 1 integrons were found in 22/33
(66.66%) of the K. pneumoniae strains (Table 9).

Table 8. Prevalence of sul genes in K. pneumoniae isolates resistant to sulphonamides.

No. of isolates with genes

Strain Characteristics Sul 1 Sul 2 Sul 3
Sul 1

Sul 2

Sul 1

Sul 3

Sul 1

Sul 2
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Sul 3

Sulfonamide Resistance

N=33

15

45.45%

20

60. 60%

2

6. 06%

2

6. 06%

1

3. 03%

-

0%

Table 9. Prevalence of in1 genes in K. pneumoniae isolates resistant to sulphonamides.

No. of isolates with genes

Strain Characteristics

Sul 1

+

Int 1

Sul 2

+

Int 1

Sul 3

+

Int 1

Sulfonamide Resistance

N=33

22

66. 66%

3

15. 15%

2

6. 06%

Figure 4. Result of the PCR Assay for resistance genes of K.
pneumoniae (tetB and qnr). number 1: DNA size ladder 100 bp
(Fermentas), number 2: negative control; number 3 and 4: positive
samples and positive control.

Figure 5. Result of the PCR Assay for resistance genes of K.
pneumoniae (sul1). number 1: negative control; number 2, 3 and 3:
positive samples and positive control. ), number 5: DNA size ladder
100 bp (Fermentas).

Discussion
In this study, we evaluated the antibiotic resistance patterns of
K. pneumoniae and the frequency distribution of K.

pneumoniae genes and their relatedness with the class 1
integron in K. pneumoniae and sul genes. Integrons have
become an important means of horizontal transfer of resistance
genes in clinical isolates [22,35]. The present study showed
that the most common K. pneumoniae serotype was K2 (15/90;
16.66%), followed by K1 (13/90; 14.44%). magA has been
confirmed to be located in the cps (capsular polysaccharide
synthesis) gene cluster of serotype K1 of K. pneumoniae and is
restricted to serotype K1 isolates, regardless of their sources
[36-38]. Our present data show that A total of 10 (11.11%) K.
pneumonia isolates carried rmpA which is in contrary with
human isolates of K. pneumoniae, in which the rmpA gene is
present in both K1 and K2 capsular serotypes, as well as nearly
67% of non–K1/K2 serotypes,17 but the magA gene appears
restricted to isolates of the K1 serotype [15]. Therefore, magA
is a good tool for molecular typing rather than a major
virulence determinant. In contrary, a study conducted in
Singapore and Taiwan showed that the most common serotype
was K1 (34/73; 46.6%), followed by K2 (15/73; 20.5%). magA
was restricted to serotype K1. All K1 or K2 isolates and 66.7%
(16/24) of isolates that were neither serotype K1 nor serotype
K2 (non-K1/K2) carried rmpA [39]. In addition, another study
also showed that Serotype K2 K. pneumoniae is the second
most prevalent serotype next to serotype K1 as a cause of
pyogenic liver abscess and is also frequently reported in
community acquired pneumonia [40].

The treatment of infectious diseases is an important issue for
human wellbeing and the daily increase in bacterial resistance
has elevated patients’ costs in recent years. In our study,
markedly high resistance to Amoxicillin and Cephalothin was
noticed in clinical isolates of K. pneumoniae. K. pneumoniae
isolates were considerably resistant to cephalosporin has been
reported from other parts of the world [41]. Our study, along
with other studies, have also demonstrated that the rates of
ESBLs production in our country are different from other
countries such as; India (57.1%), Turkey (57%) and South
Korea (30%), which showed a higher prevalence of ESBL-
producing isolates [42-45]. Feizabadi et al. found that the rates
of resistance for amikacin, ciprofloxacin, cefepime,
ceftazidime, and cefotaxime were; 21.4%, 28%, 76% and
84.0%, respectively [46]. The comparison of our study results
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with the above-mentioned study shows that antibiotic
resistance to four of the previously mentioned antibiotics is
higher in our study. In addition, in another study, both non-
hospitalized and hospitalized isolates were more resistant to
first line drugs including; ampicillin, and trimethoprim-
sulfamethoxazole [45]. This result, which is comparable with
other studies in developing countries, is due to the widespread
use of these drugs because of their low cost and easy
administration. Long hospital stay and antibiotic pressure
select resistant strains which were colonized in susceptible
patients [47]. In these conditions physicians have limited drug
choices. High percentage of resistant to Amoxicillin,
Cephalothin, Kanamycin and the other beta lactams show the
high rate of beta lactam prescription. Also, aminoglycosides
are used in combination therapy with beta- lactam antibiotics.
Therefore, it is expected to reveal high rate of resistance to
aminoglycosides as well as beta-lactams. Although, sequencing
analyzes show integrated gene cassettes related to
aminoglycoside resistant in most isolates, however, in total
there are medium rates of resistance for aminoglycosides
(gentamicin, 26.7% and amikacin 32.2%). Our findings with
regard to the overall high resistance of K. pneumoniae strains
to antibiotics such as Amoxicillin (87.8%), Cephalothin
(53.3%), Kanamycin (45.5%), and others studied are in
agreement with those of other recent studies [48-51]. This
shows the limited possibility of using these antibiotics in the
empirical treatment of patients infected with K. pneumonia.
Usually sulfonamides resistance is encoded by the sul1, sul2,
and sul3 genes. We found that more than half of the K.
pneumoniae strains possessed one or more of these sul genes,
and in 60.60% of these strains, sulfonamides resistance
occurred. This result is in line with others done among E. coli
strains, the sul2 gene has been found to be predominant in E.
coli strains isolated in UTI episodes [32,52]. In our study,
sulfonamides treatment was associated with the occurrence of
sul genes and with increased phenotypic resistance to
sulfonamides. Horizontal gene transfer has been associated
with escalated SXT resistance among Enterobacteriaceae
[52,53]. The remarkable stability of resistance markers, such as
phenotypic resistance patterns and sul genes, among K.
pneumoniae strains may be a helpful tool for the preliminary
differentiation between relapse and reinfection.

The present study characterized class 1 integrons and their
gene cassettes in K. pneumoniae isolates collected from
clinical patients. In this study, we observed lower class 1
integron prevalence in K. pneumoniae (66.66%) compared to
the previously reported frequencies of 92% in India [54],
93.2% in Shan Dong, China [55], 73% in Australia [56], and
70% in the United States [25]. The class 1 integron was highly
prevalent in K. pneumoniae (66.66%) and was strongly
associated with the sul1 genes, which was similar in other
literature [57]. Thus, class 1 integrons with various gene
cassette arrays in association with sul1 genes were highly
prevalent in Enterobacteriaceae, and the variation of the gene
cassettes in class 1 integrons may reflect the horizontal transfer
of integrons among members of the Enterobacteriaceae family
[57]. On the other hand, previous study conducted in Iran

showed that Class 1 integrons were more frequent among K.
pneumoniae isolates in comparison with class 2. Five different
resistance gene arrays were also identified
among class 1 integrons. Dihydrofolate reductase (dfrA) and
aminoglycoside adenyltransferase (aad) gene cassettes were
found to be predominant in the class 1 integrons [58].

In conclusion, we report the first extensive study regarding the
distribution and antimicrobial resistant profile of K.
pneumoniae and sul genes and the prevalence of sulfonamides
resistance-encoding sul genes and their Relatedness to Class 1
Integrons among K. pneumoniae isolates in Iran. The study has
revealed that serotype K1 is one of the most important
serotypes of K. pneumonia. Also there seems to be a strong
relationship between presence of Integron and increased
resistance to different antibiotics. In this study serotype K1 or
K2 is the major virulence determinant for K. pneumoniae.
Majority of the isolates are resistance to Amoxicillin and
Cephalothin. In addition, resistance to sulfonamides in K.
pneumoniae was explained by the acquisition of sul1, sul2, and
sul3 genes. There is also high rate of antibacterial resistance in
K. pneumoniae and diverse integrated gene cassettes related to
class 1 integrons. In most of the cases, class 1 integrons with
various multi-gene cassette arrays in association with sul1
genes were widely disseminated in K. pneumoniae so that,
there is a strong relationship between presence of class 1
Integron and increased resistance to sulfonamides antibiotics.
The wide distribution of integrons in the K. pneumoniae
isolates and sul genes may be because of the horizontal transfer
of antibiotic resistance gene and might become a serious threat
to the search for effective antimicrobial therapy in the future.
The results of this study reinforce the need for increasing
concern for therapy for clinical infections caused by K.
pneumoniae isolates having resistance-encoding sul genes in
relation to class 1 integrons. Therefore, continued monitoring
of antimicrobial resistance, the adoption of prudent use of
antimicrobial agents and the establishment of a surveillance
system is urgently needed to prevent further dissemination in
Iran.
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