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Abstract

Electroencephalography (EEG) is an electrophysiological monitoring technique to capture the brains
electrical activity. It is a noninvasive recording technique in which electrodes are placed over the scalp.
EEG records the variations in voltage resulting from ionic current inside the brain neurons. In a clinical
perspective, EEG corresponds to the recording of the brain's impulsive electrical activity during a given
time period. EEG is used to diagnose epilepsy, sleep disorders, encephalopathies, etc. Hence, EEG
signals are very useful in detecting abnormalities in the human brain. But the main problem in the
analysis of these signals is due to the noise that gets added to them. These artefacts arise due to various
reasons such as due to power line disturbance (50 or 60 Hz) or due to other natural rhythms of the body
like the heartbeat, muscle movement, blinking of eyes etc. These signals get added as noise while
recording of the EEG signal and pose difficulty in correct clinical analysis. Therefore, it is necessary to
develop methods that are efficient in removing noise from these signals. Several methods such as those
based on time and frequency have been earlier utilized but failed due to their inability to remove low-
frequency noise. In this work, several pre-processing filters have been tested on EEG data. An attempt
has been made to find the best pre-processing technique that can be used for effective cleaning of EEG
signals. From the results obtained it can be concluded that the proposed modified self-filter shows the
best results when compared with other filtering techniques such as Kalman filter, recurrent quantum
neural network (RQNN) filter, moving average (MA) filter, modified self-filter, Savitzky Golay (SG)
filter and Weiner filter.
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Introduction

Motivation and Incitement
The human brain is the most complex yet the most fascinating
organ. Methods to decode its neuronal functions or
dysfunctions are yet to be entirely definitized so far. Several
neuroimaging techniques such as fMRI (functional magnetic
resonance imagining), SPECT (single photon resonance
imaging tomography), PET (positron emission tomography)
and EEG (electroencephalography) are vastly applied in the
analysis of brain functions as these are highly effective in
providing the cerebral metabolic information that can easily be
visualized [1]. With the advent of these techniques, it has
become easier to understand the various processes occurring in
the brain and their quantification has become much simpler.
Amongst all the available neuroimaging techniques EEG is
widely used because of its ease of acquisition, reliability, high

temporal resolution, easy portability and less risk to the users
[2]. The spatial resolution and specificity of the EEG
recordings are low because of the volume conduction effects
occurring in the brain but still, this technique has managed to
outperform other methodologies for determining the
kaleidoscopic brain functions and understanding the how,
where, what and when functional modalities of the brain.
These signals are extensively being used in cognitive science,
neurophysiological studies, and clinical research applications
for identification and cure of diseases such as epilepsy and
sleep disorders along with the development of rehabilitation
systems [3-5].

EEG signals are recorded non-invasively using an electrode
cap which consists of 16, 32, 64 or more recording electrodes
or using headbands or head gear that consists of dry electrodes
and wireless systems. Though special precautions are taken
while recording the EEG signals, these signals still get
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contaminated with what is called as artefacts [6]. Artefacts are
unnecessary and unwanted noise signals that get mixed with
the original EEG signals and distort the relevant neuronal
information provided by them and makes their analysis
difficult. They hide as actual EEG components and mix with
the original EEG signals and hence cause an incongruity
between the motivation of research and realization for actual
system implementation. Moreover, the wrong diagnosis by the
medics may lead to the loss of someone’s life or any other
permanent damage. Also, the recorded signals have low signal
to noise ratio (SNR), usually of the order 0.067-0.0954 [7].
Having such low SNR causes hindrance in the removal of
noisy signals because the noise signals correspond to very low
frequency. Therefore, methods that focus on both high and
low-frequency noise removal have been chosen in order to
cover the maximum bandwidth of EEG signals (4-50 Hz).
These artefacts may arise from various environmental and
biological sources such as the powerline sources used for the
recording devices, a change in impedance of the recording
devices, blinking of the eye, unwanted muscle movements,
muscle contractions, cardiac activity, breathing, sweating,
swallowing [8].

Any discrepancy in the original EEG signal indirectly or
directly has an effect on the application for which these signals
are being used. In clinical applications the inaccurate
interpretation of EEG signals may lead to the wrong diagnosis
of the disease and hence wrong medication to the patient may
prove to be fatal. It is therefore very important to deal with
them before further processing or analysis of these signals. It is
easier to get rid of technical artefacts by improvement in
recording techniques, but biological artefacts pose to be a
problem. Also, in countries like India where healthcare
equipment’s and facilities are not of very good quality and get
corrupted with noises the need for the development of filtering
techniques that are software based and do not require any extra
hardware installation is necessary.

Related work
Many artefact rejection techniques have been designed and
being implemented not only to make the signals noise free but
be able to preserve the true nature of the EEG signal. Some
conventional artefact removal techniques include principal
component analysis (PCA), independent component analysis
(ICA), common spatial patterns (CSP) filtering, blind source
separation (BSS), regression and filtering as reviewed by
Kanoga et al. [9]. Artoni et al. [10] implemented the
decomposition techniques based on PCA and ICA for noise
elimination from EEG signals recorded during visual memory
experiment and computed that these are more suitable for
offline analysis. However, the disadvantage of using PCA is
that it becomes difficult to reconstruct the overall signals using
the linear combinations of the principal components because of
the ignorance of signals with small amplitudes and irregular
changes. On the other hand, ICA faces the difficulty of
detecting signal components if Gaussian noise is contaminated
in the manner that noise spreads over in an undesirable way
into the signal components. BSS technique for rejection of

muscle and ocular artefacts was implemented by Mowla et al.
[11] on EEG signals recorded from healthy males sitting idle.
But decomposition using this technique prove to be tedious,
time-consuming and computationally complex. In the
mid-1990’s regression techniques for this purpose were widely
used for non-stationary EEG data as for example by Kenemans
et al. [12]. Sanjana and Patel [13] presented a technique, to
categorise Ocular Artefact region and create reference signal,
in which Discrete Wavelet Transform (DWT) is applied with
Adaptive method. The problem in using wavelet signals is that
the disintegration of contaminated signals could not be
distinguished from EEG substitutes having more ocular
artefacts. Chavez et al. [14] discussed a novel surrogate-based
artefact removal (SuBAR) for automatic eradication of artefact
from single-channel EEG. The limitation of this method,
however, was as the spectrum of noisy EEG was similar to the
stationary process, this method was unable to find the long and
stubborn muscular artefacts. Most of the research is either
focused on the improvement of existing techniques or the
development of hybrid techniques that can be used for this
purpose [15]. Limited literature is available on the comparison
of different techniques used for artefact rejection. A common
methodology that can be utilized to perfectly remove artefacts
has still not been defined.

Methods

Contributions
Methods based on digital filtering such as Kalman filter [16],
Savitzky Golay (SG), recurrent quantum neural network
(RQNN) [17], self-filtering and moving average (MA) filter
have been tried and tested upon in this paper to detect the best
filter for artefact removal. Further modifications in self filter
has been done to enhance its efficiency for artefact removal.
Kalman filter has been used to remove the uncorrelated noise
in time. SG and MA filters are commonly used for signal
smoothing. RQNN filters rely on quantum mechanics and
Schrodinger wave equation for improving the SNR ratio. The
advantage of using time domain filters is that the raw data can
directly be applied to the filter and the output is obtained,
unlike frequency domain filtering techniques which require
computation of root mean square value and Fourier transform
of the signal which has a high latency rate and delay. Also,
they are found to be more efficient in removing the Gaussian
noise, random noise and pink noise which occur due to
different sources as mentioned before [18]. Although these
filters have consistently been used for noise removal from EEG
signals, in this paper slight modifications have been done in the
existing methods to improve their performance. The
aforementioned filters are used for data smoothing and removal
of noise. Their filtering capabilities are tested on EEG data. A
known amount of machine generated noises are added to these
signals and the comparison of filters is done based on various
parameters such as signal correlation and mean square error.
Hence, the scope of the work proposed is concentrated on the
optimal selection of time domain-based filter that are robust to
variations in real-time implementation.
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Review of Filtering Techniques

Kalman filter
This algorithm finds a wide application in removing noise from
time series data. The main advantages of these filters are their
small computational time and requirements, sophisticated
recursive properties and its ability as an estimator for one
dimensional linear system embedded with Gaussian noise. To
make estimations it uses the past and present observations
because of its recursive nature [19]. Estimation of the state of
the system at a given time ‘T’ is computed from the previous
state obtained at ‘T-1’, described with the help of stochastic
linear differential equation given as:�� = ��� − 1+ ����+ �� (1)
Here, �� represents the state vector,   ��is the control input
vector, A is the state transition matrix, ��is the input control
matrix and �� represents the system noise.

The measured signal is given as follows:�� = ����+ � 2
Here, �� is the measurement vector, �� represents the
transformation matrix that correlates the measurement �� with
system state��. ��is the random variable which represents the
measurement vector.

This algorithm is used for removing the noise from the data
with the help of a two-layer network of prediction and
measurement stage. An autoregressive model of order 3 is
utilized for parameter estimation [20].

Savitzky-Golay filter
Savitzky-Golay (SG) algorithm is a digital FIR smoothing
polynomial filter used for noise removal in low frequency data.
Smoothing is done based on the least squares fitting of
polynomials to frames of noisy data segments. This is achieved
by fitting consecutive subsets of end-to-end data points using a
lower degree polynomial with the help of least squares. The
filter parameters are chosen using experimental procedure and
a frame length of 41 and polynomial of order 3 is chosen for
the SG filter [21]. It is known to maintain the original
morphology of the signal while simultaneously giving the
smallest peak distortion and an increased signal to noise ratio
for non-stationary signals like EEG.

Moving average filter
This is also a kind of low pass finite impulse response filter
(FIR) used for data smoothing applications of short-term
fluctuations occurring in time series data. It analyses the data
points by decomposing the whole dataset into smaller subsets
also known as windows and taking their average. The subsets
are so chosen such that they are equal in number from either
side of the central value [22]. In our study a window of length
6 is taken for which the moving average can be defined as:

� �= � � − 3 + � � − 2 + � � − 1 + � � + � �+ 1 + � �+ 2 + � �+ 363
here � � is the original signal.

Recurrent Quantum Neural Network (RQNN) filter
Gandhi et al. proposed RQNN architecture in which a noisy
signal is used to excite the neural lattice making the topology
stable [23]. Here the output of the probability density function
act as a feedback to the kernel function. The error generated
here is weighted to evaluate the potential function V (x, t)
expressed as:� �, � = �� �, � � �, � (4)
Where � is scaling factor used to activate the potential
function. W (x, t) is weight matrix and g (x, t) is the Gaussian
kernel function which is given as:� �, � = exp � � − � 2 * 1 + � � − � � 22 − � �, � 5
Where � �  is raw signal and �(�) is the estimated signal x
position of the particle in the neural lattice, t is the time and p
(x, t) is the pdf. The potential function V (x, t) modulates the
Schrodinger Wave equation (SWE) which can be expressed in
terms of wave function ψ (x, t) as:� �, � = − ℎ22� ∇2 � �, � + � �, � � �, � = �ℎð� �, �ð�(6)
Where h is planks constant taken as 1 and m mass of particle.
The estimated signal can be found through maximum
likelihood function (MLE) which is given as:

� � = � � �, � 2 =∫� � �, � 2�� (7)
Here ψ x,t 2 is the pdf of the signal and E [.] is expected
vector. The synaptic weight can be updated by following rule:ð� �, �ð� = − ��� �, � + �� �, � 1 + � � 2 (8)�� is the de-learning rate which is used to forget the previous
value of the weight matrix since EEG signal is nonstationary
signal and λ is learning rate which is used to update the weight
matrix. The de-learning rate is used to limit the weight matrix
from going to infinite as the rightmost term is positive. The
SWE is evaluated by Crank-Nicolson method [24]. The
parameters of RQNN m, λ and ζ is evaluated by using particle
swarm optimization.
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Self-filtering
For the development of transfer function Stockwell transform
(ST) [25] and modified ST (MoST) has been used. The transfer
function TF for self-filtering is given as:TF t,f = S t,fmax S t,f (9)
Where S (t, f) is the ST or MoST of the EEG signal. The S
transform S (t, f) of a signal x (t) is given as:

S t,f =∫−∞∞ x t g(t − τ, σ)e−i2πfτdτ (10)
Where g(t-τ,σ) is Gaussian function is giveng t−τ, f = 12πσe− t−τ 2/2σ2 (11)
Where τ is translational in time domain t and σ is dilation in
frequency domain. The standard ST cannot handle the noise in
the EEG signal therefore MoST introduced by Zhang et al. [26]
has been employed here which increases the time and
frequency domain resolution. The Gaussian window used for
MoST is given as:

g t−τ, f = p+ f q2π e− t−τ 2 p+ f q 2/2σ2 (12)
After evaluating the transfer function of SF from (10), the filter
is realized by following equationY t,f = S t,f *TF t,f (13)
The filtered signal y(t) has been reconstructed is given as:

y t =∫−∞∞ 2πf Y t,f e2πfτdτ (14)
It is to be noted that SF deemphasizes the low amplitude
feature on S spectrum compared to the large amplitude therefor
the random noise feature, which has low amplitude is
attenuated.

Performance Evaluation

Implementation on EEG signal
EEG signals are widely used in detection of various diseases as
well as psychophysiological disorders and hence need to be
free of noise so as to avoid incorrect diagnosis. The correct
pre-processing methods play an important role which most
importantly maintains the original signal structure. Keeping
this in mind and taking into account the complex nature of
EEG signals different filtering techniques is tested upon
complex EEG data.

Dataset description
The dataset used in this paper is the BCI Competition IV 2012
Dataset 2b which is comprised of 2 classes of motor imagery
(http://www.bbci.de/competition/iv/#dataset2a) [27].

These signals are then added with a known amount of noise.
The final signal embedded with noise can be described as:��� � � = ��� � �+ � �
Where ��� � � the contaminated is EEG signal,  ��� � � is
the pure EEG signal and � � represents the noise components.
The noise added is either white Gaussian, random or pink noise
[28]. Here analysis is done mainly on machine generated noise
because they are the major source of noise which occur during
recording of EEG data. Gaussian noise is a form of statistical
having probability density function (pdf) similar to that of the
normal distribution which is also called the Gaussian
distribution. The different values that the noise can be taken
varying according to the Gaussian distribution. It is referred to
as white noise because it is assumed that the power is
uniformly distributed across the entire frequency spectra or in
simpler words it can be said that it has equal amount of all the
colours. Hence, white noise is equally present in all the
frequency bands having same power [29]. Therefore, in
frequency domain, level of noise is flat throughout at each
frequency. The term Gaussian comes from the fact that the
noise signal has a normal distribution in time domain having a
zero-mean value. Random noise is also derived from white
Gaussian noise. Pink noise is a type of coloured noise whose
PSD is inversely proportional to the frequency. Hence it is also
called as 1�  noise or flicker noise. It derives its name from the
pink appearance of visible light having this power spectrum. In
pink noise the noise energy is equally distributed per octave
[30]. The PSD shows a decrease of 3 dB per octave which is
equivalent to 10 dB/decade. It is predominantly found in lower
frequency bands having a PSD given as � � = 1��  with

exponent θ being equal to 1 for electrophysiological signals.
This is also known as the power law which can be generalized
as � = � �� �  . The value of θ ranges from -2 to 2 and � �  is

a constant function.

The EEG signals are given as an input to different filters and
their performance is tested.

Performance evaluation
Performance evaluation is done to validate the goodness of a
filter in removing the noise from the EEG signals. The true
EEG signals are embedded either with 0 dB random noise, 5
dB or 15 dB white Gaussian noise and 5 dB and 15 dB pink
noise. Efficiency of the filters is tested using different filter
evaluation parameters as discussed henceforth.

Evaluation parameters: The different parameters used for
evaluation of filters are as follows:

Gupta/Bhatnagar/Kumar/Sinha

16

Biomed Res2019 Volume 30 Issue 4

Biomed Res 2020 Volume 31 Issue 1



Correlation: It is the measure of dependence between two
variables. It is calculated using:

��� = ∑� = 1� �� − � �� − �∑� = 1� �� − � 2 �� − � 2 (15)
Here and �� are the signals being compared with mean � and�.

A perfect correlation is achieved between the filtered and pure
EEG signal if the correlation coefficient is 1 [31].

Coherence: Coherence is the measure of similarity between
two signals, that is how well a signal x corresponds to another
signal y at different frequencies. Its values are bounded
between 0 and 1. 0 indicates that the two signals�� are linearly
independent and the value 1 corresponds to linearly dependent
signals. Coherence of two signals x and y is calculated as

follows: ���(�) = ���(�) 2 /(���(�)���(�)) (16)
Here ��� is the cross PSD of signals x and y and   ��� and ���
are the PSD of the signals with respect to itself [32].

Signal to noise ratio (SNR): Signal-to-noise ratio (abbreviated
SNR) is a measure that compares the level of a desired signal
to the level of background noise. SNR is defined as the ratio of
signal power to the noise power, often expressed in decibels. A
ratio higher than 1:1 (greater than 0 dB) indicates more signal
than noise.

Power spectral density estimation: It determines the
distribution of signal power over the entire frequency range. It
is an important measure in determining the effectiveness of the
filter. Maximum the difference between the PSDs of a signal
before and after the filtration, the better is the filter quality. It is
an indicator of the amount of other frequency components
present in a signal apart from those in the desired frequency
range [33,34]. Lesser the value of PSD lesser are the other
unwanted signals present. PSD here is obtained using the Fast
Fourier Transform with the help of the following equation:

� � = 1���∑� = 1
� ��  �−� 2��/�� 2 (17)

Here, � represents the number of samples, ��is the sampling
frequency and �� is the signal whose PSD is to be calculated.

Mean Square Error (MSE): It is obtained by calculating the
difference between true EEG signals and filtered EEG signals.

��� = 1�∑� = 1
� ��� � ��������− ��� � ���� 2 (18)

Here K represents the number of samples.

Results and Discussion
The noisy EEG signals are denoised using different filters one
by one and their efficiency is tested based on the filter
parameters. The EEG signals are added to each of the different

type of noises. All the noisy signals are filtered using the filters
and an attempt has been made to find the most suitable filter
for a given type of signal. The different filter parameters used
for developing the filters are discussed as follows.

SG a finite impulse response smoothing filter is designed
having an order of 3 with a frame length of 31. A SG filter
performs much better than other conventional filters if correct
frame length and order are chosen. The parameters chosen are
as presented by [31]. The plot obtained after filtering the EEG
signal embedded with random noise of 0 dB is shown in Figure
1. Similarly, for MA smoothing filter a frame length of 6 was
chosen and the filtering plot obtained using this signal for EEG
wave filtration embedded with 5 dB white Gaussian noise is as
shown in Figure 2. For filtration using RQNN filters a number
of tuning parameters are taken into consideration, which needs
to be tuned appropriately. These parameters are chosen with
the help of PSO. For EEG signals the chosen value of m,
lambda and zeta are 0.5, 0.9 and 2, respectively. Similarly,
parameters of self-filter and modified self-filter are also tuned
to obtain the best results. Figure 3 represents the filtering plot
for RQNN filter for EEG wave embedded with 15 dB Gaussian
noise. The filtering plots obtained for EEG waves embedded
with 5 dB pink noise and 15 dB white Gaussian noise are as
shown in Figures 4 and 5 for SF and modified Figure 6 shows
the plot for filtering using Kalman for 0 dB random noise for
EEG wave. The noisy signal and filtered signal are both plotted
in the same graph for all the cases. As stated, before the
classification of best filter was done based on different
evaluation parameters discussed before. Table 1 discuses
correlation, PSD and SNR values obtained using different
filters for class 1 signal of dataset 2b. Table 2 illustrates the
result for coherence and MSE values after filtration for the
same signal. From the results as seen in Tables 1 and 2 it can
be observed that all the filters show a correlation value of
almost 0.9 for all the filters between the raw EEG and filtered
EEG. This indicates that all the filters apart from removing
noise also retain the original signal effectively. Therefore,
choosing the best filter based on just this parameter is difficult.
The coherence values lie between the range of 0.2 and 0.7 for
all the filtering techniques used while mostly being on the
lower side. The lower the coherence value the more likely it is
for the two signals to be related to each other. The MSE value
obtained is found to be the least in case of SG filter, almost
nearer to 0 for all the types of added noise. Kalman filter also
exhibits a very low MSE of 0.159 for random noise addition.
SNR ideally should be as high as possible because more the
SNR more is the signal content. All the filters exhibit a SNR
value of 22-24 dB for random noise signals. PSD is the
measure of how the signal is distributed with respect to
frequency. It determines the distribution of signal power over
the entire frequency range. It is an important measure in
determining the effectiveness of the filter. Maximum the
difference between the PSDs of a signal before and after the
filtration, the better is the filter quality. It is an indicator of the
amount of other frequency components present in a signal
apart from those in the desired frequency range. The PSD
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before filtration was -11.64 dB/Hz and it varied between
-13.178 to -30.3015 dB/Hz.

Table 1. Evaluation parameters (corr, SNR, PSD) for class 1 EEG wave embedded with different types of noise.

Filter\Type of Noise
Random Noise White Noise (5 dB) White Noise (15 dB) Pink Noise(5 dB) Pink Noise(15 dB)

Corr. SNR PSD Corr. SNR PSD Corr. SNR PSD Corr. SNR PSD Corr. SNR PSD

M.A. 0.963 22.92 -17.7 0.974 5.29 -17.4 0.691 1.6 1.98 0.953 9.2 -18.1 0.863 8.1 -17.1

S. G. 0.985 24.83 -16.6 0.978 5.73 -17 0.944 3.15 -13.1 0.969 11.3 -17.7 0.799 1023 -18.3

S. F. 0.941 21 -13.3 0.92 2.66 -19.5 0.487 5.22 -12.8 0.944 7.62 -26.3 0.784 6.2 -16.2

Modified S. F. 0.924 22.3 -27 0.915 3.77 -22.5 0.829 5.49 -15 0.895 7.98 -25.5 0.915 8.8 -35.6

RQNN 0.824 21.7 -28 0.953 4.79 -23.5 0.979 5.89 -17 0.995 9.98 -28.5 0.978 6.8 -18.3

Kalman 0.996 24.4 -12.2 0.901 6.8 -1.43 0.552 28.6 -7.57 0.959 10.59 -8.74 0.853 11.29 -9.4

Table 2. Evaluation parameters (Coherence, MSE) for class 1 EEG wave embedded with different types of noise.

Filter\Type of Noise
Random Noise White Noise (5 dB) White Noise (15 dB) Pink Noise(5 dB) Pink Noise (15 dB)

Coherence MSE Coherence MSE Coherence MSE Coherence MSE Coherence MSE

M.A. 0.272 1.245 0.25 0.818 0.176 1.542 0.24 1.595 0.31 0.52

S. G. 0.262 0.404 0.233 0.59 0.2 1.537 0.235 0.801 0.33 0.9

S. F. 0.345 2.847 0.213 2.922 0.145 2.492 0.312 2.573 0.12 3.2

Modified S. F. 0.257 2.508 0.229 2.581 0.184 1.415 0.26 3.24 0.29 4.4

RQNN 0.24 1.308 0.329 0.585 0.194 0.425 0.32 0.23 0.22 0.13

Kalman 0.776 0.159 0.255 2.789 0.198 0.975 0.388 1.068 0.28 2.1

Figure 1. Filtration plot using SG filter for EEG signal added with 0
dB random noise.

Figure 2. Filtration plot using MA filter for EEG signal added with 5
dB white Gaussian noise.
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Figure 3. Filtration plot using modified RQNN filter for EEG signal
added with 15 dB white Gaussian noise.

Figure 4. Filtration plot using SF filter for EEG signal added with 5
dB pink noise.

Figure 5. Filtration plot using modified SF filter for EEG waves
added with 15 dB white Gaussian noise.

Figure 6. Filtration plot using Kalman filter for EEG signal added
with 0 dB random noise.

The correlation and coherence values indicate the difference
between pure and impure EEG signals. It can be observed that
modified self-filter has correlation and coherence values,
which clearly indicate its efficiency in filtration. The signal to
artefact ratio and MSE obtained using modified self-filter is
also low, which corresponds to very less artefacts in filtered
signals.

The plot for MSE for EEG signals added with random noise is
as shown in Figures 7, 8. x-axis indicates the different filters. 1
stands for SG, 2 for MA, 3 for SF, 4 for modified SF, 5 for
RQNN and 6 for Kalman filter.

Figure 7. MSE plot for random noise added class 1 EEG wave.

Figure 8. MSE plot for 15 dB white Gaussian noise added class 1
EEG wave.

Taking into consideration all signals and all the filtering
techniques it cannot be stated that one filter is superior to
others. Choice of filter depends mainly on signal to be filtered
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and the quantity and type of noise added in it. According to the
feasible filter orders suggested by Xian et al. [35] to obtain best
filtration using SG filter, further analysis was also conducted
on filter of order 2 and 4 and according to the results obtained
it was concluded that filter of order 3 was found to be most
suitable. Similarly, MA filter with varying window lengths
were also tested, ranging from 4-7 and window length of 6 was
found to be most efficient. Parameters for RQNN were chosen
using PSO hence, hence obtained filter is most optimized.

Conclusion
The different adaptive filters are designed and applied for EEG
signals. The design parameters of the filter are varied in a
certain feasible range and all the possible combinations are
evaluated using dataset 2b. The parameters corresponding to
the highest correlation coefficient are the optimal design
parameters of the filter. The designed filter is tested
successfully on noisy EEG signal for different values of SNR.
It is revealed that the modified SF filter removes the noise as
well as the original shape of the signal is, maintained. The
technique proves to be computationally simple, fast and
efficient. Further, the method can also be used for other signals
such as ECG, EMG, EOG, and EGG. In this article, the authors
presented consistent comparison of the most popular methods
of EEG signal pre-processing to facilitate subsequent EEG
classification process. Automatic algorithms such as: Self-
Filtering, Weiner Filtering (in the task of EEG artefact
removing) and combinations of these algorithms were
implemented and tested. Experiments show that the best results
(classification accuracy improvement) was obtained for
modified self-filtering. The developed pre-processing
algorithms that use self-filtering are more difficult to
implement on-line. While the modified self-filtering algorithm
can be used without any problem in any BCI. In addition, it
was observed that the sophisticated pre-processing methods
improved classification results particularly.
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