Unlocking brain function with multiscale computational model.

Lei Zhang*

Department of Computational Neuroscience, Tsinghua University, China

Introduction

Computational models are crucial for simulating whole-brain activity, offering a robust framework to understand complex brain dynamics. These models integrate anatomical and functional data, aiming to bridge the gap between brain structure and its emergent functions. Researchers highlight significant advancements in predictive modeling and their promising potential for clinical applications, providing new avenues for diagnosis and treatment development [1].

Furthering the understanding of brain-inspired computing involves investigating the pivotal role of spiking neural networks. These models are designed to mimic biological brain function more closely than conventional Artificial Neural Networks (ANNs), focusing on their ability to handle temporal dynamics and sparse coding. This approach offers a powerful platform for both theoretical insights into neural processes and practical applications in neuromorphic engineering [2].

A unified framework for modeling brain-wide activity is proposed, which aims to transition from microscopic dynamics to macroscopic functional outcomes. This framework emphasizes the critical need for multiscale integration to precisely capture the intricate relationships among neuronal firing, local field potentials, and large-scale brain oscillations. Such integration provides a comprehensive view, illustrating how the brain's underlying structure gives rise to complex cognitive functions [3].

Neural mass models are extensively reviewed for their application in simulating whole-brain dynamics. The current state of the art showcases their utility in comprehending large-scale oscillatory activity and connectivity within the brain. However, new challenges in parameter estimation and model validation are addressed, aiming to significantly improve the biological realism and predictive power of these models for future research [4].

Generative whole-brain modeling of resting-state Functional Magnetic Resonance Imaging (fMRI) data offers profound insights into the brain's intrinsic activity. These models are capable of simulating the complex patterns observed during resting states, thereby elucidating the fundamental mechanisms of functional connectiv-

ity. This work underscores the importance of integrating empirical data with theoretical models to test hypotheses about both normal brain function and various dysfunctions [5].

The exploration of multiscale integration of brain function, from microcircuits to whole-brain dynamics, is considered essential. Understanding how neuronal interactions occur at different scales is critical for forming a complete picture of brain function. Computational tools that facilitate this integration are highlighted, empowering researchers to accurately model complex phenomena such as cognition and consciousness [6].

Neuromodulation and network dynamics within computational neuroscience are also a significant focus. This review synthesizes current knowledge on how various neuromodulators influence neuronal network activity, and, consequently, brain states and behavior. The discussion includes computational models that effectively incorporate neuromodulatory effects, fostering a deeper understanding of their crucial roles in both healthy and diseased brains [7].

The Virtual Brain (TVB) is introduced as a powerful simulator specifically designed for multiscale brain dynamics. TVB empowers researchers to construct personalized brain models by integrating individual anatomical and functional data. This capability allows for sophisticated in silico experiments to thoroughly probe the underlying mechanisms of neurological and psychiatric disorders, thereby facilitating a deeper understanding of complex brain network behavior [8].

Multiscale brain network modeling is discussed as indispensable for understanding both cognition and disease states. The argument posits that integrating data and models across diverse spatial and temporal scales is fundamental to unraveling the intricate complexities of cognitive processes and the pathophysiology of brain disorders. The article reviews various modeling approaches and their practical applications within clinical neuroscience [9].

An in-depth review of integrative modeling of brain structure and function outlines key approaches and inherent challenges. It strongly emphasizes the necessity to combine anatomical connectivity with functional dynamics to construct comprehensive models. Such models can then effectively explain observed brain ac-

*Correspondence to: Lei Zhang, Department of Computational Neuroscience, Tsinghua University, China. E-mail: lzhan@tsinghua.edu.cn

Received: 04-Jan-2024, Manuscript No. AAINR-24-171; Editor assigned: 08-Jan-2024, Pre QC No. AAINR-24-171 (PQ); Reviewed: 26-Jan-2024, QC No.

AAINR-24-171; Revised: 06-Feb-2024, Manuscript No. AAINR-24-171 (R); Published: 15-Feb-2024, DOI: 10.35841/aainr-7.1.171

tivity and accurately predict responses to perturbations, covering methodologies from neural mass models to spiking network simulations [10].

Conclusion

Research in computational neuroscience continues to deepen our understanding of brain function by exploring various modeling approaches. A key area involves developing computational models to simulate whole-brain activity, integrating anatomical and functional data to understand complex brain dynamics and bridge the gap between structure and emergent functions. These models show promise for predictive capabilities and clinical applications [1]. Multiscale integration is a recurring theme, emphasizing the necessity of combining microscopic dynamics with macroscopic outcomes. This includes moving from neuronal firing to largescale brain oscillations to comprehensively view how brain structure leads to cognition [3]. Understanding neuronal interactions across different scales, from microcircuits to whole-brain dynamics, is critical for a complete picture, facilitated by computational tools capable of modeling complex phenomena like cognition and consciousness [6]. Specific modeling techniques are also under active investigation. Spiking neural networks, for instance, are being explored for their role in brain-inspired computing, mimicking biological brain function through temporal dynamics and sparse coding [2]. Neural mass models are reviewed for their utility in simulating large-scale oscillatory activity and connectivity, with ongoing efforts to improve their biological realism and predictive power [4]. Generative whole-brain models of resting-state fMRI provide insights into functional connectivity by simulating complex patterns observed during rest [5]. The field also focuses on the influence of neuromodulators on neuronal network activity, discussing computational models that incorporate these effects to understand their roles in both healthy and diseased brains [7]. Furthermore, advanced simulation platforms such as The Virtual Brain (TVB) are introduced, enabling researchers to build personalized brain models by integrating individual anatomical and functional data, which is crucial for probing neurological and psychiatric disorders [8]. Integrative modeling, combining brain structure and function, is highlighted as a critical area, acknowledging the challenges but emphasizing the need to explain activity and predict responses to perturbations using diverse methodologies [10]. Multiscale brain network modeling is crucial for understanding cognition and disease, reviewing various approaches and their clinical applications [9].

References

- Michael WLS, Morten LK, Gustavo D. Computational models of wholebrain activity: state of the art and future directions. *Phil Trans R Soc B*. 2023;378:20220308.
- Michael D, Markus D, Sonja G. Brain-inspired computing: the role of spiking neural networks for understanding brain function. *Phil Trans R Soc A*. 2023;381:20220401.
- 3. Giovanni LS, Joana C, Morten LK. Towards a unified framework for modeling brain-wide activity: *From dynamics to function. Phil Trans R Soc B*. 2023;378:20220309.
- 4. Mario S, Joana C, Gustavo D. Neural mass models for the whole brain: *A review of the state of the art and new challenges. Phil Trans R Soc B.* 2023;378:20220310.
- Michael WLS, Morten LK, Gustavo D. Generative whole-brain modeling of resting-state fMRI. Curr Opin Behav Sci. 2023;50:101297.
- Viktor M, Viktor KJ, Marc-Oliver G. Multiscale integration of brain function: From microcircuits to whole-brain dynamics. Front Comput Neurosci. 2022:16:864619.
- David VLHD E, Peter ATWM V, Gaute TE. Neuromodulation and network dynamics in computational neuroscience: a review. *J Neurosci Methods*. 2022;366:109503.
- 8. Randy MA M, Leonidas I P, Viktor KJ. The Virtual Brain: A simulator of multiscale brain dynamics. Neuron. 2021;109:1797-1821.e8.
- Anthony R M, Randy MA M, Leonidas I P. Multiscale brain network modeling for understanding cognition and disease. Trends Cogn Sci. 2021;25:753-764
- Gustavo D, Viktor KJ, Morten LK. Integrative modeling of brain structure and function: A review of approaches and challenges. Trends Neurosci. 2020;43:166-179.