Pulmonary hypertension: Advances, management, future directions.

Vincent Dupont*

Department of Pulmonology, Sorbonne University, Paris, France

Introduction

Pulmonary hypertension (PH) represents a complex and progressive condition characterized by elevated blood pressure in the arteries of the lungs, leading to significant morbidity and mortality if left unaddressed. Recent efforts have aimed at standardizing clinical practice and advancing the understanding and management of this challenging disease. The 2022 ESC/ERS Guidelines provide a comprehensive framework for the diagnosis and treatment of PH, emphasizing updated classifications, refined diagnostic algorithms, and robust risk stratification tools. These guidelines underscore advancements in therapeutic strategies and advocate for multidisciplinary care, ultimately seeking to harmonize practices across Europe and enhance patient outcomes.[1]

Looking beyond current pharmacological interventions, the future of PH management is actively being shaped by innovative research exploring novel therapeutic avenues. Emerging strategies include gene therapy, sophisticated stem cell approaches, and the application of personalized medicine. These modalities hold considerable promise for transforming patient care by addressing unmet clinical needs that current drug therapies may not fully resolve.[2]

A deeper understanding of the disease's foundational biological processes is essential for developing such advanced treatments. Insights into the molecular and cellular mechanisms underpinning PH reveal key pathways involved in vascular remodeling, inflammation, and cellular dysfunction. This knowledge is critical for identifying potential new therapeutic targets and fostering a more complete understanding of the disease's intricate pathogenesis.[3]

Specific subtypes of PH also receive focused attention due to their unique diagnostic and management requirements. Chronic Thromboembolic Pulmonary Hypertension (CTEPH), for instance, demands a specialized approach that encompasses early recognition, the use of advanced imaging techniques, and the critical role of interventions such as pulmonary endarterectomy and balloon pulmonary angioplasty. The optimal management of CTEPH necessitates treatment within specialized centers to ensure the best possible patient care and outcomes.[4]

Complementing these efforts are continuous advancements in diag-

nostic technology. Recent progress in non-invasive imaging techniques, particularly echocardiography, is proving invaluable. These improvements allow for more precise quantification of right ventricular function and pulmonary pressures. Alongside other emerging imaging modalities, these non-invasive tools significantly enhance diagnostic accuracy and assist in risk stratification, reducing the reliance on invasive procedures.[5]

Addressing the unique challenges posed by PH in younger populations, current treatment strategies for pediatric PH are continually being reviewed and refined. This area of study acknowledges the specific diagnostic considerations pertinent to children and explores how adult therapies can be safely and effectively applied in pediatric settings. Moreover, research is focused on developing novel pediatric-specific interventions, all with the goal of improving outcomes for children affected by this severe condition.[6]

Central to effective long-term management is robust risk assessment and stratification. Current methodologies, which integrate clinical scores, hemodynamic parameters, and imaging findings, are vital. These tools provide essential guidance for making informed treatment decisions and accurately predicting prognosis, thereby enabling a more personalized approach to patient care.[7]

Furthermore, the integration of biomarkers into clinical practice is rapidly advancing. Current insights and future perspectives on various circulating and imaging biomarkers demonstrate their potential utility in several key areas: early diagnosis, accurate disease prognostication, and effective monitoring of treatment response. The aim is to seamlessly integrate these markers into routine clinical practice, thereby enhancing patient management.[8]

Genetic factors also play a significant role in PH, particularly in heritable forms of the disease. A contemporary review of the genetic landscape details various gene mutations, discussing their profound impact on pathogenesis, clinical presentation, and therapeutic implications. This underscores the paramount importance of genetic counseling and testing for affected families to identify predispositions and guide interventions.[9]

Finally, the critical role of right ventricular dysfunction in PH is a significant area of research. By exploring its underlying pathophys-

*Correspondence to: Vincent Dupont, Department of Pulmonology, Sorbonne University, Paris, France. E-mail: vincent.dupont@sorbonne.fr

Received: 01-Oct-2025, Manuscript No. aaagim-308; Editor assigned: 03-Oct-2025, Pre QC No. aaagim-308 (PQ); Reviewed: 23-Oct-2025, QC No. aaagim-308;

Revised: 03-Nov-2025, Manuscript No. aaagim-308 (R); Published: 12-Nov-2025, DOI: 10.35841/aaagim-9.4.308

iological mechanisms, researchers are identifying specific therapeutic opportunities aimed at improving cardiac function and overall prognosis in patients where right heart failure is a major determinant of outcome. [10]

Collectively, these comprehensive studies illustrate a dynamic field dedicated to understanding and improving the lives of individuals with pulmonary hypertension.

Conclusion

Pulmonary Hypertension (PH) management has seen significant advancements and diversified research across various aspects of the disease. Comprehensive guidelines from 2022 standardize diagnostic algorithms, treatment strategies, and risk stratification, aiming to improve patient outcomes across Europe.[1] Beyond conventional pharmacotherapy, future directions explore innovative modalities such as gene therapy, stem cell approaches, and personalized medicine to address unmet clinical needs.[2] Understanding the molecular and cellular mechanisms of PH, including vascular remodeling and inflammation, is crucial for identifying new therapeutic targets and clarifying its complex pathogenesis.[3]

Specific forms of PH, like Chronic Thromboembolic Pulmonary Hypertension (CTEPH), require a practical approach to diagnosis and management, emphasizing early recognition, advanced imaging, and specialized surgical or interventional procedures like pulmonary endarterectomy and balloon pulmonary angioplasty.[4] Diagnostic capabilities are continually evolving with recent advances in non-invasive imaging techniques, particularly echocardiography, which improves quantification of right ventricular function and pulmonary pressures for enhanced diagnostic accuracy and risk stratification.[5]

PH in children presents unique challenges, necessitating agespecific diagnostic considerations and adapting adult therapies while developing pediatric-specific interventions.[6] Risk assessment and stratification are fundamental to guiding treatment decisions and predicting prognosis, utilizing clinical scores, hemodynamic parameters, and imaging findings.[7] The integration of biomarkers, both circulating and imaging-based, holds promise for early diagnosis, prognostication, and monitoring treatment response.[8] Furthermore, the genetic underpinnings of heritable PH forms are being elucidated, highlighting the role of genetic counseling and testing.[9] A critical focus remains on right ventricular dysfunction, exploring its pathophysiological mechanisms and identifying therapeutic opportunities to improve cardiac function and overall patient prognosis.[10] This body of work collectively underscores a multifaceted approach to PH, from foundational understanding to advanced clinical management.

References

- Marc H, Stephan R, Patricia PG. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022;43:3618-3731.
- 2. Nazzareno G, Francesca B, Alessandra M. Pulmonary arterial hypertension: beyond new drugs. *Eur Heart J.* 2022;43:4793-4806.
- Marlene R, Edda S, Stephen LA. Molecular and cellular mechanisms in the pathogenesis of pulmonary hypertension. Lancet Respir Med. 2021;9:1403-1419
- Irene ML, Nazzareno G, Michele D. Chronic thromboembolic pulmonary hypertension: a practical approach to diagnosis and management. *Eur Respir Rev.* 2021;30:200202.
- L. Gabriel R, Marie-Alice P, Laurent DFT. Pulmonary hypertension: recent advances in non-invasive imaging. Curr Opin Cardiol. 2023;38:442-449.
- Eric BR, Stephen LA, Dunbar I. Pulmonary Hypertension in Children: A Review of Current Treatment Strategies. Circ Res. 2020;127:1636-1650.
- Marius MH, Irene ML, Marc H. Risk assessment and stratification in pulmonary hypertension. Eur Respir Rev. 2021;30:210088.
- 8. Ton K, Harm-Jan B, Anton VN. Biomarkers in pulmonary hypertension: current insights and future perspectives. *Eur Respir J.* 2022;60:2102381.
- Marion E, Marc H, Olivier VAE. Genetics of Pulmonary Hypertension: A Contemporary Review. J Clin Med. 2020;9:3233.
- Marco G, Stephen LA, Marc H. Right ventricular dysfunction in pulmonary hypertension: pathophysiological mechanisms and therapeutic opportunities. J Am Coll Cardiol. 2021;78:1515-1533.

Citation: Dupont V. Pulmonary hypertension: Advances, management, future directions. aaagim. 2025;09(04):308.

aaagim, Volume 9:4, 2025