Integrative synaptic plasticity: Mechanisms and context.

Jean Dupont*

Department of CNRS Neuroscience Division, Sorbonne University, France

Introduction

This paper explores how inhibitory synaptic plasticity is integrated into the developing neocortex, influenced by early sensory experience. It highlights the dynamic interplay between excitatory and inhibitory circuits in shaping mature cortical function, suggesting a crucial role for precise inhibitory control in learning and development [1].

This study investigates how a specific small molecule inhibitor of SIK2 influences integrative synaptic plasticity in the context of Alzheimer's Disease, particularly in amyloid-beta pathology. It suggests a potential therapeutic avenue by modulating synaptic function and resilience against neurodegenerative processes [2].

This review explores the complex interplay between synaptic dysfunction and mitochondrial impairment in Alzheimer's Disease. It argues that these two cellular processes are not independent but rather integratively contribute to neurodegeneration, emphasizing the need for therapies targeting both aspects for effective treatment [3].

This article comprehensively reviews the integrative functions of astrocytes in modulating synaptic plasticity and memory formation. It highlights how these glial cells actively participate in synaptic transmission, regulate neuronal excitability, and contribute to long-term potentiation and depression, going beyond their traditional supportive roles [4].

This review examines the integrative mechanisms by which various neuromodulators fine-tune synaptic strength and plasticity. It discusses how different neurotransmitters and peptides interact to orchestrate complex changes in synaptic efficacy, thereby influencing learning, memory, and behavioral states [5].

This article focuses on the cerebellar glomerulus as a critical integrative synaptic microcircuit. It elucidates how multiple inputs converge and interact within this structure, emphasizing its role in processing and refining sensorimotor information, crucial for motor coordination and learning [6].

This review explores the role of microglial dysfunction in synap-

tic impairment and its implications for neuropsychiatric disorders. It highlights how the integrative crosstalk between microglia and synapses can contribute to the pathology of various brain conditions, suggesting new targets for neuropsychiatric interventions [7].

This review discusses the concept of multiscale integration within cortical microcircuits, spanning from the intricacies of dendritic processing in single neurons to the emergent dynamics of neural networks. It highlights how these different levels of integration contribute to complex brain functions and computations [8].

This article explores how synaptic plasticity, traditionally studied at the level of individual synapses, integrates across multiple synapses and neuronal circuits to underpin complex brain functions. It discusses the challenges and approaches to understanding how local synaptic changes scale up to influence global brain activity and behavior [9].

This integrative review discusses the tight relationship between dendritic spine morphology and synaptic plasticity. It highlights how the structural dynamics of spines are intricately linked to the functional changes at synapses, offering insights into how these physical alterations contribute to learning and memory processes [10].

Conclusion

The provided research explores the multifaceted nature of integrative synaptic plasticity and its implications across various neurological contexts. We see how the developing neocortex incorporates inhibitory synaptic plasticity, influenced by sensory experiences, to shape cortical function and aid in learning [1]. Research also delves into Alzheimer's Disease, identifying potential therapeutic roles for small molecule inhibitors of SIK2 in modulating synaptic resilience [2], and emphasizing the combined impact of synaptic and mitochondrial impairments on neurodegeneration [3]. Beyond neurons, astrocytes emerge as critical players, integratively modulating synaptic plasticity and memory by engaging in synaptic transmission and regulating excitability [4]. Similarly, neuromodulators fine-tune synaptic strength through complex interactions, influencing learning, memory, and behavioral states [5]. Specific brain regions, like the cerebellar glomerulus, are detailed as inte-

Received: 06-Sep-2025, Manuscript No. AAINR-25-196; Editor assigned: 09-Sep-2025, Pre QC No. AAINR-25-196 (PQ); Reviewed: 29-Sep-2025, QC No.

AAINR-25-196; Revised: 08-Oct-2025, Manuscript No. AAINR-25-196 (R); Published: 17-Oct-2025, DOI: 10.35841/ aainr-8.3.196

^{*}Correspondence to: Jean Dupont, Department of CNRS Neuroscience Division, Sorbonne University, France. E-mail: jduont@sorbonne.fr

grative synaptic microcircuits essential for sensorimotor processing and motor learning [6]. Microglial dysfunction is also linked to synaptic impairment, playing a significant role in neuropsychiatric disorders and presenting new therapeutic targets [7]. The discussion extends to multiscale integration within cortical microcircuits, from dendritic processing to network dynamics, highlighting its contribution to brain computations [8]. The very idea of synaptic plasticity is expanded to encompass integration across multiple synapses and neuronal circuits, bridging the gap between localized changes and global brain function [9]. The structural dynamics of dendritic spines, their morphology, are intimately connected to synaptic plasticity, revealing how physical changes at synapses underpin learning and memory processes [10].

References

- Hong Y, Yang M, Hao W. Experience-dependent integration of inhibitory synaptic plasticity in the developing neocortex. Cell Rep. 2021;36:109506.
- Young G, Soonmook Y, Youngjoo K. Integrative Synaptic Plasticity Mediated by a Small Molecule Inhibitor of SIK2 in Amyloid-Beta Pathology. J

- Alzheimers Dis. 2023;92:569-586.
- Vivek S, Ashutosh KS, Shweta M. Integrative Synaptic and Mitochondrial Impairments in Alzheimer's Disease. ACS Chem Neurosci. 2024;15:3-17.
- 4. Pei Y, Jie F, Ya Z. Integrative roles of astrocytes in synaptic plasticity and memory. Cell Mol Life Sci. 2021;78:37-56.
- Shreepriya N, Shanmuganand A, Sangeeth V. Integrative Regulation of Synaptic Strength by Neuromodulators. Front Synaptic Neurosci. 2022;14:825103.
- Takeo K, Jessica R, Tomohiro S. The Cerebellar Glomerulus: An Integrative Synaptic Microcircuit. Front Synaptic Neurosci. 2023;15:1152912.
- 7. Md M A, Metin T, Khushnuma A. Microglial-Synaptic Dysfunction and Integrative Neuropsychiatry. Curr Neuropharmacol. 2023;21:1222-1246.
- Marco E, Thomas W, Henning S. Multiscale integration in cortical microcircuits: from dendritic processing to network dynamics. *Curr Opin Neurobiol*. 2021:67:108-117.
- Claire M G, Charles A H, Kevin M H. Synaptic Plasticity: Bridging the Gap Between Single Synapses and Integrative Brain Function. J Neurosci. 2020:40:1-13.
- 10. Anna S, Vladimir G, Noam E Z. Spine morphology and synaptic plasticity: *An integrative review. Trends Neurosci.* 2020;43:569-583.

Citation: Dupont J. Integrative synaptic plasticity: Mechanisms and context. Integr Neuro Res. 2025;08(03):196.