

Article type: Perspective

Home Page URL: <https://www.alliedacademies.org/neurology-and-neurorehabilitation-research/>

Cortical plasticity and functional reorganization in post-stroke motor rehabilitation.

Helen Vargas*

Department of Neurophysiology, Universidad Nacional de La Plata, Argentina.

*Correspondence to: Helena Vargas, Department of Neurophysiology, Universidad Nacional de La Plata, Argentina, E-mail: h.vargas@unlp.edu.ar

Received: 03-Jul-2025, Manuscript No. JNNR-25-171933; **Editor assigned:** 04-Jul-2025, PreQC No. JNNR-25-1719335(PQ); **Reviewed:** 18-Jul-2025, QC No JNNR-25-1719335; **Revised:** 21-Jul-2025, Manuscript No. JNNR-25-1719335(R); **Published:** 28-Jul-2025, DOI:10.35841/ aajnnr -10.3.261

Introduction

The human brain's remarkable capacity for adaptation following neurological injury is one of the most fascinating phenomena in neurophysiology. After a stroke, many patients experience partial or total loss of motor function due to cortical damage, particularly within the motor cortex and related pathways. Yet, over time, numerous individuals regain varying degrees of mobility. This recovery, often attributed to cortical plasticity, involves dynamic restructuring within neural networks that compensate for lost function. Advances in neuroimaging have illuminated how intact cortical regions can reorganize and assume roles previously handled by damaged areas, an effect supported by both synaptic modifications and neurogenesis in specific contexts [1].

The concept of experience-dependent neuroplasticity plays a vital role in post-stroke rehabilitation. Therapeutic interventions such as constraint-induced movement therapy and mirror therapy have demonstrated how repeated, purposeful activity can drive functional reorganization. These techniques exploit Hebbian principles—neurons that fire together wire together—by reinforcing synaptic connections associated with voluntary movement. Concurrently, rehabilitation intensity and timing

significantly influence the extent of recovery, as early, structured interventions promote stronger cortical engagement and minimize maladaptive compensations that might limit progress [2].

Neurorehabilitation technologies have evolved to leverage cortical plasticity through brain-computer interfaces (BCIs) and robotic-assisted training. BCIs decode neural activity patterns to provide real-time feedback, reinforcing correct movement intentions even in the absence of overt motion. Such feedback loops enhance motor cortex excitability and strengthen neural pathways underlying voluntary control. Similarly, virtual reality-based rehabilitation systems allow immersive, task-specific training that fosters motivation and engagement while stimulating multisensory integration—an essential factor in optimizing neuroplastic outcomes [3].

However, neuroplasticity is not universally beneficial. Maladaptive changes, such as aberrant synaptic strengthening or unbalanced interhemispheric inhibition, can hinder recovery and promote spasticity or learned nonuse. Understanding these mechanisms is crucial for developing targeted interventions that maximize beneficial plasticity while suppressing maladaptive responses. Pharmacological modulation of neurotransmitter systems, particularly dopaminergic and GABAergic

Citation: Vargas H. Cortical plasticity and functional reorganization in post-stroke motor rehabilitation. *J Neurol Neurorehab Res.* 2025;10(3):261.

pathways, offers potential for fine-tuning cortical excitability and enhancing rehabilitation outcomes when integrated with behavioral therapy [4].

Emerging research also underscores the role of genetic and molecular factors in shaping recovery potential. Variations in genes related to brain-derived neurotrophic factor (BDNF) and dopamine receptors influence individual responses to rehabilitation. Moreover, non-invasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), have shown promise in modulating neural plasticity at a cellular level. Integrating these modalities into personalized neurorehabilitation frameworks may redefine the future of post-stroke therapy by aligning biological, technological, and behavioral principles [5].

Conclusion

Cortical plasticity represents both the foundation and frontier of neurorehabilitation science. The interplay between biological mechanisms and therapeutic innovation continues to expand the boundaries of recovery potential following stroke. As research

deepens our understanding of adaptive and maladaptive plasticity, individualized rehabilitation strategies combining behavioral, pharmacological, and technological interventions will become increasingly sophisticated. The ultimate goal remains to harness the brain's inherent capacity for reorganization to restore autonomy and improve quality of life for patients recovering from neurological injury.

References

1. Nutt JG, Wooten, GF. Clinical practice. Diagnosis and initial management of Parkinson's disease. *N Engl J Med.* 2005;353:1021-27.
2. Elbaz, A, Bower JH, Maraganore DM, et al. Risk tables for parkinsonism and Parkinson's disease. *J Clin Epidemiol.* 2002;55:25-31.
3. Poirier, LJ, Sourkes, TL. Influence of the substantia nigra on the catecholamine content of the striatum. *Brain.* 1965;88:181-92.
4. Carlsson A, Lindqvist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5hydroxytryptophan as reserpine antagonists. *Nature.* 1957;180:1200.
5. Cotzias, GC, Papavasiliou, PS, Gellene R. Modification of Parkinsonism--chronic treatment with L-dopa. *N. Engl. J. Med.* 1969;280:337-45.