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Abstract

Steady blood flow through a circular artery with rigid wallsis studied by COSSERAT Con-
tinuum Mechanical Approach. To obtain the additional viscosities coefficients, feed forward
multi-layer perceptron (MLP) type of artificial neural networks (ANN) and the results ob-
tained in previous empirical works is used. The governing filed equations are derived and
solution to the Hagen-Poiseuilli flow of a COSSERAT fluid in the artery is obtained analyti-
cally by Homotopy Perturbation Method (HPM) and numerically using finite difference
method. Comparison of analytical resultswith numerical ones showed excellent agreement. .
In addition microrotation and the velocity profile along the radius are obtained by using
both numerical and analytical approaches.
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I ntroduction been proposed for blood as a non-Newtonian fluid by
several researchers. Casson proposed a model which
Over 20 million people die every year due to bloed applied successfully fo_r gnaly_sis of bloo_d flow Nerrill
lated diseases [1]. Since the blood flow is an irtgd an(_j others later [8]. Biviscosity model is anothmd_gl,
subject in biomedical and medicine sciences, thewier ~ Which express that blood behaves as non-Newtofuanh f

of blood in the artery is one of the most importprdb- in small shear rates and Newtonian _quid in larpeas
lems in biomechanical engineering. Thus many studie@tes- Nakamura and Sawada used this model suakessf
have been performed analytically, numerically ae e [9: 10]- In the case of blood flow because of cdesible
perimentally to determine the blood behavior asddif- ~Mechanical properties which is emanate from itsronic
ferent properties [1-5]. The phenomena which aseas Structure, the theory of sm_1ple mate_rlals canndtesthe
ated with flow of blood through arteries such asatiity ~ Problem, so a more sensitive continuum theory sagh
of flow, non-Newtonian behaviour of blood as adlaind  Nonlocal, micropolar, multipolar, and gradient thes

flexibility of the arteries wall are very complieat; there- [5,11,12] with higher kinematic status will be appl
fore, theoretical study of blood flow is a veryfiiglt ~ More successfully. The idea of a material body @rdo

problem to attack. The nonlinear behavior of bleaas ~ With both translational and rotational degreesreéiom
unknown until the second half of the last centusy. [ stems from the seminal work of the Cosserat brether
From the rheological point of view, blood is a watased ~(Cosserat and Cosserat) [13, 14]. In this continutime
solution which is the combination of organic andrin effect of couples and forces are considered indigrely
ganic substances and a variety of suspended callsym from each other which later named micropolar cantin

red cells which strongly affects the dynamic ofdaloas by Eringen [11]. Fluids of this continuum mediunnca
flood so that blood can be characterized as a norfUPport the couple stress, the body couple andynons

Newtonian fluid [7, 8].Fig. 1 shows the componeftao Metric stress tensor and possess a rotation figiih is

blood sample [7]. Detailed information can be found independent of the velocity field. The rotationdiés no
previous literatures [6-8]. longer equal to the half of the curl of the velparector

field. Because of the assumption of infinitesimatar

Experimental studies revealed that the blood visgos UONS, we can treat the rotation field as a vefiedd. The
decreased with an increase in shear rate and thad b theory, thus, has two independent kinematic vagmithe

has a small yield stress. Some constitutive mobale  Velocity vectorV and the spin or microrotation vector.
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Because of complex rheological behavior of bloavfl represented by the generally nonsymmetric foraesstr

and the fact that blood contains a Varlety of celith a and Coup|e stress tensdjis' andm_ , respective|y_ The
Lo . j

spinning movement that affects the blood flow viigc

we should applied Cosserat continuum model. Thidaho

can consider the effects of rotational movement laasl

the ability to describe the complex fluid flows bBuas

balance of linear momentum and angular momentum re-
quire that the following equations must be satikfie

non-Newtonian and turbulent fluid flow [11, 12, 1&nd DV,
16]. Recently tytfi=p— (4)
Dt
Sedaghatizadeh et. al [17] conducted a semi empirical _.Dw
d [17] b m; 0t +l=j—— ®)

semi numerical study on blood flow through an griar
Cosserat continuum, and revealed that the blood éx-
hibits a parabolic trend. They also calculated mioa- Where p, |, f., andl. are the mass density, microiner-
Newtonian factors exist in governing equations gisin i P _
PSO algorithm and find out that these factors atecan-  tia, body force per unit mass and body couple per u

Dt

stant during a cycle of a heart [17]. mass, respectively, anB)/ Dt denotes the material time
_ o _ derivative. Here we choose linear constitutive ¢éigna
Equation of motion in Cosserat continuum which describe our material behavior. It can besabn

ered as generalization of Newtonian fluids in tlessical
In Cosserat continuum both velocity and rotatiootee  Navier-Stockes theory, which are
field are considered at any material point. In ortdede-
velop the relation between current state of orthoad ¢ = (_ T+AV )5k| + 1, (Vi +V, ) KV~ T @)

vor,r

directions attached to each material point andnitsal (6)
state we have the following. _
my =a,0,, 9y + B0 + Y, (7)

=0 - 1 ) ] ]
R i i @) Where 71 is the thermodynamic pressure. The linear con-
Where 9; and [, are the Kronecker delta and permuta-stitutive equation for nonsymmetric stress tensie. (

tion tensor, respectively. The associated Cossifar- ~ Cauchy's stress tensor), contains an additionabsity

microrotation field on the stress tensor. The lineansti-

written as
_ tutive equation for couple stress also containsettaddi-
& =V Tk @ . o e
tional viscosity coefficienta,, 5, andy, .
Ky = W 3

At this stage the above equations should be cordhime
where the comma denotes partial differentiatioris ibb-  obtain the governing field equations. The field auns
vious that in the absence of the rotation vedior the  for micropolar fluids in the vectorial form are giv by
classical continuum mechanics is recovered. conservation of mass (i.e. continuity equation)

It is assumed that the transfer of interaction betwtwo
particles of the continuum through a surface elémen—— + D.(,OV) =0 (8)

n,ds occurs by means of both a traction vedt@s and

a moment vectamn ds. Surface forces and couples are

Balance of liner momentum

(A, +2u, +k,)02 IV (g, +k,)OxOxV +k,Ox@-Om+ of =
VAR - 9
PO ©
t 2
And balance of angular momentum
(a,+ B, +y, )07 Qo= y,Ox O x @+ kO xV - 2k @+ o = pj% (10)
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Problem Definition with the following boundary condition:

Fig. 2 shows a part of the femoral artery of a ddgre

the measurements were made previously at USC Schog] |, @ =0 rOr (18)
of Medicine. "on ’ ’

The pressure drop through the artery is measurix) us
two small branch arteries. To simplify the geometrg
vessel (Fig. 2.a) assumed and kept to be relatstedyght
with mild taper (Fig. 2. b). The flow through a sekis
determined by pressure gradient, which is assumd t
constant in most of the problems with practical amp
tance and the vessel is considered as a pipe adiug
of R. The Oz axis overlaps the centerline of pipe. In this
case the velocity components and the microrotatien L(U)"' N(U)‘ f(r): 0, rbQ, (19)
locities become

whereA is a general differential operatds,a boundary
operator,f (r) a known analytical function anfl is the

boundary of the domai®. A can be divided into two
parts which areL and N, wherelL is linear andN is

nonlinear. Eq. (17) can therefore be rewrittenciisws:

Homotopy perturbation structure is shown as follows

V=V, =0,V =u(r), AD Wy, p)=@- p)[Ll)- L)+ plAk)- £()]=0,  (20)
W =w, =0, w, =o(r), (12)
where,

From continuity when  p =const [6], we

- . 21
havel ][V =0. By neglecting the body forces and body I/(r, p). Qx[O,l] - R, D)

couples, the equations of motion (i.e., Egs. (9 €t0))

are reduced to the following form in cylindricalazdi-  |n Eq. (21), pD[O,l] is an embedding parameter and

nate system. . , N .
y U, is the first approximation that satisfies the baany

d(rdv, d _ condition. We can assume that the solution of Bd) (
(,uk + kv)a dr + K/E(rwe) =P, (13)  can be written as a power seriepjras following:
VV%(%+%j_K/d;:Z_2Kwe:0 (14) V=Votpy+pi,+o, (22)

The above two coupled partial differential equagion @"d the best approximation for solution is:
should satisfy the following boundary and initiadnali-

tions u=lim, ,v=v,+v,+v,+..., (23)
At 1=0: dv, =0 da, =0 (15) In order to solve Eq. (17) using HPM, we constrig
dr "odr ’ following homotopy; we need an initially conditievhich

dv is Eqg. (18). After constructing the Homotopy PHras

At r=R: V,=0, w,= —na, (16)  tion of Egs. (13) and (14) and rearranging basegam-

ers ofp-terms, we can obtain:

dv

Where w), = —nd—, is a dissipative boundary condition o [ (r) =0

r ; : (24)
[11, 18] andD< n<1. This factor is small for a laminar u,(r)=0
flow and is increases as flow become turbulent.
Analysis of the Homotopy Perturbation Method ) )

_1r°p, 1Rp,
Homotopy Perturbation Method (HPM) [19-29] is based Si(r) ok tu ok«
on the Homotopy which is an important part of tbeal- pl: K+ 4, K+ 4, (25)
ogy [30-31]. y (r) _ npr
(r)=——"2

Au)-f(r)=0, roQ, (17) K, + 4,
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SQ(r):grznoz(-/v1+2kv2n—kv)__1F%2|oz(-/4+2<v2n—kv)
2 (k*a) 2 (kru)

2. _1krip(2n-0)  1krip (-9 1 1
1w, (r)== += +=

6 v(k+a) 6 n(k+u) 6y (K +2ku+4
—12n°yk, + Bk, + KSR+ KRy, -k R*-KR%, ) )
So V, and w), can be obtained as follows with four terms of appnation as
_1r'p, 1Rp,  1r'p,(-H+2kn-k)
2k g, 2k *u, 2 (K4,

_1Rp,(-u+2kn-k,) 1 1 )3(pz(—41r(—4lg2n/,lv+2K,3—4K,3n+ 8, )rt

)(pz(6nyvkv (26)

Ve =5(r)+si(r)+s,(r) +55(r)

2 (k+a) 3y, (K +4, 27)
+%(2kfR2n— KR+ 2K, R, =k, R, = By, + 13k, = 1B ¥k, -3uy, )r?)
1 1 2 2 2
TS \3 sz 2k\uuv_4nkv +kv _4nkv/'lv )
2(K+/Jv)3( ( )
and
_ __npr _1kr’p(20-1) 1 1
@ = (1) F () () ru(r) = k+4, 6 ¥(k+u) +6yv(kf+2kvﬂv+ﬂv2)x
(. (Bt y, — 1207y k, + By, + &R+ R, -k, R~k R%,)r)
11 1 1
(ko (2= (k) KRR+ A
3y (k+u,) (. (2n-3 20( A 28)
+4yvyv)r3))—ﬁ)(pz(lsmyfuvz—72m2n%2+ 1% Rh- 720 nY, - W R Y,

—TkR'p,°+ 80k, Ry, + 2& TRy, + 168, TR ¥4, + 8RR ¥4, = 720n ¥, I,
+360k,ny,° 4, — &, R - 8% R, 4, + 14 R'hy, *+ 188, hy, *
=40k Ry, )1 ) /(162 (7 +3uak, 2+ 3%, + 14, 7))

In the above solution, the viscosity coefficienfsCOSSERAT mediumK,,a,, B, andy,) are unknown. Thus the

feed forward multi-layer perceptron (MLP) type ofificial neural networks (ANN) can be employeddalculate these
coefficients on the basis of experimental datahls study, the flow field and the results of expemts done in Fach-
hochschule Frankfurt by Silber [30] on steady bldlos through a dog artery with the diameter ofrhén, is consid-
ered to determine the viscosity coefficients.

Results and Discussion locity, respectively. As it is obvious analytic oatnes are
in good agreement with numerical ones.

In this study Homotopy Perturbation and Finite Biff Numerical solutions of governing coupled Eqgs. (a8)
ence Methods are implemented to study the steambdbl (14) with boundary conditions (15) and (16) areaoi¢d
flow through a circular artery. Results are comgaire by finite difference FORTRAN code. Successive under
Figs. 6 and 7 for both normalized microrotation ased relaxation (SUR) method is implemented to solvedn
algebraic equations and the value of 0.1 is takerufi-
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der-relaxation parameter. The governing equatiams aeach neuron in hidden layer and then treated tactva-
discretized by applying second-order accurate akdif-  tion function. The obtained result is then multgpliby the

ference schemes. Grid independency was verifiedifon ggsociated weighC, and again the previous procedure

ferent node numbers from 51 to 201 and finallyiben- will be repeated in the output neuron. In the meseudy

E)eerr Ofrﬁgdcgr?\'/rgrs (Iasn::Zkg:tgrﬁoilo(lmigirrl\?umeré;?ii;:)rré hyperbolic tangent and linear functions are usedhas
wery. 9 . activation functions in the hidden and output layes-
in the values of the dependent variables betweenrstw- spectively

cessive iterations) was set atf0

The final output of the current network is calcathtis

To obtain the additional viscosities coefficie d for-
i Network output (NO) =F, (x)+F,(x,)=F(x) (29)

ward multi-layer perceptron (MLP) type of artifitiaeu-
ral networks (ANN) and the result obtained in [8lised

in this work. where,

5.1. Modeling using MLP-type neural networks R (Xl) =Cstan h(C1Xl+ CZ) (30)

An example of a MLP type of neural network with one

input node, a single hidden layer with two neurnd ane  Once the number of layers and the number of neurons
output neuron is shown in Fig.3. each layer, have been selected, the network's teeigh
An additional input called bias with constant vabfel is must be adjusted to minimize the prediction err@adm
added to the previous input node which works akifa s by the network. This is the general role of thaining
operator. Each input node is related to each neimon algorithms. In this investigation Back-propagation (BP)
hidden layer by a connecting weight. The sum of thenethod is applied to train the ANN which is the mos
products of the weights and the inputs is calcdldtg  widely used learning process in neural networkayod

Figure 1. Components of a blood sample
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Langth= 52 mm :
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Figure 2. a) X-ray tracing of portion of the femoral artery of a living dog. Ligated small branch arteries are marked
port No. 1 and 2 [8], b) smplified model of artery.
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]
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Figure 4. A feed forward multi-layer perceptron type of reuretwork with one hidden layer.
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N 01 Q summing junction activation function
T~ ( ‘

n IN
NO Win ;N OszN 7~L S NON

_ AF (1)
y ;/ \ /
NO

W

2
v

neuron N

Fig. 5. Basic elements of an artificial neuron

When a set of input data (input vector) are propaba
through the network, for the current set of weightye is
an outpuEst . The training of perceptron is a supervised
learning algorithm where weights are adjusted taoi-mi
mize the absolute error between the estimated blEst

of network and the desired outfideswhenever the es-
timated output does not match the desired outpuhel
network error NE) is defined as

Network Error =Est — Des = NE (31)

0 1 1 1 1 1 1 1 1 1 w
0 0.1 02 03 04 05 06 07 08 09 1

The training algorithm should adjust the weightgrtioi-

mizeNE?. For this purpose an artificial neuron with its
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ basic elements is considered as shown in Fig .5.

The neuron consists of three basic components;higig
summing junction and an activation function. Thépots

of n neuronsNQ,,...,NO, lead in neuroM as the in-
) puts. If neuronN is in the hidden layer then this is the
oa- A . input vector of the network. These outputs are ipliéd
03 ‘ by the associated weighé,,...\W,. The summing
: 7 junction adds together all these products to pelte
‘ inputl  for activation function of neuroN. Then

Normalized microrotation
T
L

L Il L Il L L L L L
0 0.1 0.2 0.3 04 05 06 0.7 0.8 09 1
R

|, passes through the activation functidh- ( ) and

Figure.7 Velocity profile along the radius gives the final output of neurdd, which isNO . To

Back-Propagation algorithm commence the calculations, consider neudsh and

Back-propagation was firstly proposed by Werbos] [33we|ght W,y Which connects the two neurons. The equa-
which is based on searching an error surface (@som tion for weight update is as follows:
function of ANN weights) using the gradient desceht

gorithm for points with minimum error. 9 ( NEZ)
Consider a network with one hidden layer and oripudu
neuron as shown in Fig 4.

WMN(adjusted):WMN (old)~ LR.@T (32)
MN
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where LRis the learning rate parameter and

6(NE)2/6WMN is error gradient with reference to the al _ Z “_d\qAV\(/N GZ “ (34)

+. i=2 -
weightW,,,, . The chain rule gives G\MN dMN My My, -
Egs. (32), (33) and (34) give
d(NE?) 0(NE?) g
a(W - (al ) W, 43 o (NE?)
MN N MN WMN(adjusted):WMN (old)~ LR | NOM (35)

since the rest of the inputs to neurbh are independent N
of the weightW,,, we have For the caseN is an output neuron we have:
9(NE?) =9 (Est-Des)’ 0 -

d(NE? 0AF (1 (36)
M = 2(Est - Des) OEL _ 2(NE)M = 2(NE)x AF'(1,)

al al FIN

Substituting Eq. (36) into Eqg. (35) gives
WMN(adjusted) WMN (oId) LR'NOM 2( NE) x AF' (l N) (37)

For hyperbolic tangent and linear activation fuoics AF'(I N) and the final form of weight update rule can bétem
as follows:

AF'(1,)=1-[AF(1)] OG-

for hyperbolic tangent: ) (38)
WMN(adjusted):WMN (old) ™ LRNO Z(NE (1_[AF ] )
AF'(1,)=1
for linear functions: (39)
MN(adjusted):WMN (old)”~ LR-NOM '2( NE)
WhenN is a hidden layer neuron
9(NE)’ _ 9(NE?) a1_ oNO, o)
al al,  ONO, al,
where the subscripdn represents the output neuron. In Eq. (40) we have
0AF (I
ONO, _ 0AF ( N):AF.(IN),
FIN FIN
i=N (41)
a|0n az NO i on aNO WN on alz NO \Nlon —W
ONO,  9NO, ONO,, ONO,, Non
substituting Eqg. (41) into Eq. (40) gives
d(NE? d(NE?
( ): ( )W XAF(|N) (42)

al ol Non

on

In Eq. (42),0(NE2)/6I v IS now written as a function aﬁ( NEZ)/ dl ,, which was calculated in Eq. (36).
Hence the weight update rule for a hidden layeraretakes the following form

=W 0~ LRNO a(NEZ)W xAF (1) (43)
MN (old) * M OI N on N

on
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The most common parameters for evaluation of aatewatwork’s performance are minimum total squagadrs (or
RMS error) and minimum total absolute error (or M&for). MAE and RMS errors are defined as

n

2
. ;(Deg_ESti) (44)
RMS error: o
Des —Est.
MAE '21] > St'| (45)
error: -

where N is the number of training data. The number of aidthyers and the neurons in each of them shouttetes-
mined in a way to minimum the above errors.

The velocity profile along the radius is shown ig.F6. The diagram shows that the velocity hasralpaic trend and
change from maximum value at center to zero attide Microrotation is illustrated in Fig. 7 andshows that, it varies
linearly along the radius.

The maximum values 6f and w (V,,
(27, 28) respectively as follows:

@, ..) can be obtained analytically by substituting= Oand r = R in Egs.

ax !

1 Rp, 1R°p, (-4 +2kn-k,)

Vnae = So(0) 80+ s 0+ 0 == L )

1 1 2 2 2 2, 2 2 (29)
o3 (RP\ 2Ky, — 4k, "+ K, = dnk, i, + 7K+
2 (K+/JV)3( ( )
and
Rep,(2n-1
@ = Uy (R)+u(R) +u,(R) +u (R) =RP_LKRP.(20-1)
Ko+u, 6 y(k+u)
1 1
+= 6ny k —12ny k + y k + X ’R’n+ X R
6 yv(kzv +2k\,/JV +’uv) ( pz( yvkv yvkv yvkv 2(\/ 2<v H,
KR R)R) + 2 ——— | K, p (2n—1)(—1(—kf—kvﬂ)R5
Y 3y? (K +/jv)3 ‘ 20 Y
(30)
+%(-6nyvkv +K R+ R, + Ak, + 4y, R"’D -ﬁ)( p, (180,24, - 72, %, 2
+14k,°R'n— 40 R, + 726, nY,*- 14, R, - KR * 8Q AR,
+28k,’R'ny, + 160, "nR%, 4, + 8& R, 4, "+ 36BNy, 1, - K R*
—80k,“R°4, Y, + 14, "R'ny, * + 18&, Ty, *
-0k Ry, ) R) (12 (7 + 3k, 2+ 3, %, + 1)
Conclusions radius of the artery are obtained. The obtainedlises

show that, the maximum values of velocity occutha
In this study a flow simulation respect to time atwhen- inlet core; while, the maximum values of rotaticmppen
sionless radius based on Cosserat model for a exmplnear and on the boundary during systoles and diasto
fluid like blood has been performed. ANN is appligd
obtain the non-Newtonian coefficients. Using theaée
ues, the velocity and rotation profiles are cal@daover
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