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Abstract 
 

Steady blood flow through a circular artery with rigid walls is studied by COSSERAT Con-
tinuum Mechanical Approach. To obtain the additional viscosities coefficients, feed forward 
multi-layer perceptron (MLP) type of artificial neural networks (ANN) and the results ob-
tained in previous empirical works is used. The governing filed equations are derived and 
solution to the Hagen-Poiseuilli flow of a COSSERAT fluid in the artery is obtained analyti-
cally by Homotopy Perturbation Method (HPM) and numerically using finite difference 
method. Comparison of analytical results with numerical ones showed excellent agreement. . 
In addition microrotation and the velocity profile along the radius are obtained by using 
both numerical and analytical approaches. 
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Introduction 
 
Over 20 million people die every year due to blood re-
lated diseases [1]. Since the blood flow is an important 
subject in biomedical and medicine sciences, the behavior 
of blood in the artery is one of the most important prob-
lems in biomechanical engineering. Thus many studies 
have been performed analytically, numerically and ex-
perimentally to determine the blood behavior and its dif-
ferent properties [1-5]. The phenomena which are associ-
ated with flow of blood through arteries such as pulsatility 
of flow, non-Newtonian behaviour of blood as a fluid and 
flexibility of the arteries wall are very complicated; there-
fore, theoretical study of blood flow is a very difficult 
problem to attack. The nonlinear behavior of blood was 
unknown until the second half of the last century [6]. 
From the rheological point of view, blood is a water based 
solution which is the combination of organic and inor-
ganic substances and a variety of suspended cells mainly 
red cells which strongly affects the dynamic of blood as 
flood so that blood can be characterized as a non-
Newtonian fluid [7, 8].Fig. 1 shows the component of a 
blood sample [7]. Detailed information can be found in 
previous literatures [6-8]. 
 
Experimental studies revealed that the blood viscosity 
decreased with an increase in shear rate and that blood 
has a small yield stress. Some constitutive models have 

been proposed for blood as a non-Newtonian fluid by 
several researchers. Casson proposed a model which is 
applied successfully for analysis of blood flow by Merrill 
and others later [8]. Biviscosity model is another model, 
which express that blood behaves as non-Newtonian fluid 
in small shear rates and Newtonian fluid in large shear 
rates. Nakamura and Sawada used this model successfully 
[9, 10]. In the case of blood flow because of considerable 
mechanical properties which is emanate from its micro-
structure, the theory of simple materials cannot solve the 
problem, so a more sensitive continuum theory such as 
nonlocal, micropolar, multipolar, and gradient theories 
[5,11,12] with higher kinematic status will be applied 
more successfully. The idea of a material body endowed 
with both translational and rotational degrees of freedom 
stems from the seminal work of the Cosserat brothers 
(Cosserat and Cosserat) [13, 14]. In this continuum, the 
effect of couples and forces are considered independently 
from each other which later named micropolar continuum 
by Eringen [11]. Fluids of this continuum medium can 
support the couple stress, the body couple and nonsym-
metric stress tensor and possess a rotation field, which is 
independent of the velocity field. The rotation field is no 
longer equal to the half of the curl of the velocity vector 
field. Because of the assumption of infinitesimal rota-
tions, we can treat the rotation field as a vector field. The 
theory, thus, has two independent kinematic variables; the 
velocity vector V and the spin or microrotation vectorω . 
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Because of complex rheological behavior of blood flow 
and the fact that blood contains a variety of cells with a 
spinning movement that affects the blood flow velocity, 
we should applied Cosserat continuum model. This model 
can consider the effects of rotational movement and has 
the ability to describe the complex fluid flows such as 
non-Newtonian and turbulent fluid flow [11, 12, 15, and 
16]. Recently 
 
Sedaghatizadeh et. al [17] conducted a semi empirical 
semi numerical study on blood flow through an artery in 
Cosserat continuum, and revealed that the blood flow ex-
hibits a parabolic trend. They also calculated the non-
Newtonian factors exist in governing equations using 
PSO algorithm and find out that these factors are not con-
stant during a cycle of a heart [17]. 
 
Equation of motion in Cosserat continuum 
 
In Cosserat continuum both velocity and rotation vector 
field are considered at any material point. In order to de-
velop the relation between current state of orthonormal 
directions attached to each material point and its initial 
state we have the following. 
  

kijkijijR ωδ Γ−=  (1) 

Where ijδ  and ijkΓ  are the Kronecker delta and permuta-

tion tensor, respectively. The associated Cosserat defor-
mation tensor ijε  and torsion-curvature tensor ijκ  are 

written as 

kijkijij V ωε Γ−= ,  (2) 

ijij ,ωκ =  (3) 

 
where the comma denotes partial differentiation. It is ob-
vious that in the absence of the rotation vector ω , the 
classical continuum mechanics is recovered. 
 
It is assumed that the transfer of interaction between two 
particles of the continuum through a surface element 

dsni  occurs by means of both a traction vector dst i  and 

a moment vector dsmi . Surface forces and couples are 

represented by the generally nonsymmetric force-stress 
and couple stress tensor ijt  and ijm , respectively. The 

balance of linear momentum and angular momentum re-
quire that the following equations must be satisfied 

 

Dt

DV
ft i

ijij ρ=+,  (4) 

Dt

D
jltm i

iikijkjij

ω
=+Γ+,  (5) 

 
Where ifj,,ρ , and il  are the mass density, microiner-

tia, body force per unit mass and body couple per unit 
mass, respectively, and D Dt  denotes the material time 
derivative. Here we choose linear constitutive equations 
which describe our material behavior. It can be consid-
ered as generalization of Newtonian fluids in the classical 
Navier-Stockes theory, which are 
 

( ) )()( ,,,, rklrklvkllkvklrrvkl VkVVVt ωµδλπ Γ−++++−=
 

(6) 

klvlkvklrrvklm ,., ωγωβδωα ++=  (7) 
 
Where π  is the thermodynamic pressure. The linear con-
stitutive equation for nonsymmetric stress tensor (i.e. 
Cauchy's stress tensor), contains an additional viscosity 
coefficient vk . The value of vk  shows the influence of the 

microrotation field on the stress tensor. The linear consti-
tutive equation for couple stress also contains three addi-
tional viscosity coefficients vα , vβ  and vγ .  

 
At this stage the above equations should be combined to 
obtain the governing field equations. The field equations 
for micropolar fluids in the vectorial form are given by 
conservation of mass (i.e. continuity equation) 
 

( ) 0. =∇+
∂
∂

V
t

ρρ
 (8) 

 

Balance of liner momentum 
 

( ) ( )

( ) ( )







∇+×∇×−

∂
∂

=+∇−×∇+×∇×∇+−⋅∇++

2

2

2

1

2

VVV
t

V

fkVkVk vvvvvv

rrrrr
r

rrrrrrrrr

ρ

ρπωµµλ
 (9) 

And balance of angular momentum 

( )
Dt

D
jlkVk vvvvvv

ωρρωωγωγβα
r

rrrrrrrrr
=+−×∇+×∇×∇−⋅∇++ 22  (10) 
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Problem Definition 
 

Fig. 2 shows a part of the femoral artery of a dog where 
the measurements were made previously at USC School 
of Medicine.  
The pressure drop through the artery is measured using 
two small branch arteries. To simplify the geometry the 
vessel (Fig. 2.a) assumed and kept to be relatively straight 
with mild taper (Fig. 2. b). The flow through a vessel is 
determined by pressure gradient, which is assumed to be 
constant in most of the problems with practical impor-
tance and the vessel is considered as a pipe with radius 
of R . The Oz  axis overlaps the centerline of pipe. In this 
case the velocity components and the microrotation ve-
locities become 
 
 

( )0, ,r zV V V u rθ= = =  (11) 

( )0, ,r z rθω ω ω ω= = =  (12) 

 
From continuity when const=ρ [6], we 

have 0=⋅∇ V
rr

. By neglecting the body forces and body 
couples, the equations of motion (i.e., Eqs. (9) and (10)) 
are reduced to the following form in cylindrical coordi-
nate system. 
 

( ) ( ) ,z
k v v z

rdVd d
k k r rp

dr dr dr θµ ω + + = 
 

 (13) 

2 0z
v v v

d dVd
k k

dr dr r dr
θ θ

θ
ω ωγ ω + − − = 

 
 (14) 

 

The above two coupled partial differential equations 
should satisfy the following boundary and initial condi-
tions 
 

0 : 0, 0,z ddV
At r

dr dr
θω= = =  (15) 

: 0, ,z

dV
At r R V n

drθω= = = −  (16) 

 

Where ,
dV

n
drθω = −  is a dissipative boundary condition 

[11, 18] and0 1n≤ ≤ . This factor is small for a laminar 
flow and is increases as flow become turbulent. 
 
Analysis of the Homotopy Perturbation Method 
 

Homotopy Perturbation Method (HPM) [19-29] is based 
on the Homotopy which is an important part of the topol-
ogy [30-31]. 
 
 

( ) ( ) 0=− rfuA , Ω∈r , (17) 
 

with the following boundary condition: 
 

0, =








∂
∂

n

u
uB , Γ∈r , (18) 

 
where A is a general differential operator, B a boundary 
operator, f (r) a known analytical function and Γ is the 
boundary of the domain Ω. A can be divided into two 
parts which are L and N, where L is linear and N is 
nonlinear. Eq. (17) can therefore be rewritten as follows: 

 
( ) ( ) ( ) 0=−+ rfuNuL , Ω∈r , (19) 

 
Homotopy perturbation structure is shown as follows: 
 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] 01, 0 =−+−−= rfApuLLppH ννν , (20) 

 
where, 
 

( ) [ ] Rpr →×Ω 1,0:,ν , (21) 

 
In Eq. (21), [ ]1,0∈p  is an embedding parameter and 

0u  is the first approximation that satisfies the boundary 

condition. We can assume that the solution of Eq. (21) 
can be written as a power series in p, as following: 
 

...2
2

10 +++= νννν pp , (22) 

 
and the best approximation for solution is: 
 

...lim 2101 +++== → ννννpu , (23) 

 
In order to solve Eq. (17) using HPM, we construct the 
following homotopy; we need an initially condition which 
is  Eq. (18). After constructing the Homotopy Perturba-
tion of Eqs. (13) and (14) and rearranging based on pow-
ers of p-terms, we can obtain: 

 
( )
( )

00

0

0
: ,

0

s r
p

u r

=


=
 (24) 

, 
 

( )

( )

2 2

1
1

1

1 1

2 2
:

z z

v v v v

z

v v

r p R p
s r

k k
p

n p r
u r

k

µ µ

µ


= − + +


 = −
 +

 (25) 
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… 
(26) 

So zV  and θω  can be obtained as follows with four terms of approximation as 

( ) ( ) ( ) ( ) ( )
( )

( )
( ) ( )

)(

(

22 2
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2
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2 3
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2
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p R k nk k nk
k
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µ µ
µ
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+

 (27) 

 
and 
 

( ) ( ) ( ) ( ) ( )
( ) ( )

( )( )

( )
( )( ( ) (

) ))
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(28) 

 
In the above solution, the viscosity coefficients of COSSERAT medium (vk , vα , vβ  and vγ ) are unknown. Thus the 

feed forward multi-layer perceptron (MLP) type of artificial neural networks (ANN) can be employed to calculate these 
coefficients on the basis of experimental data. In this study, the flow field and the results of experiments done in Fach-
hochschule Frankfurt by Silber [30] on steady blood flow through a dog artery with the diameter of 12 mm, is consid-
ered to determine the viscosity coefficients. 
 

Results and Discussion 
 
In this study Homotopy Perturbation and Finite Differ-
ence Methods are implemented to study the steady blood 
flow through a circular artery. Results are compared in 
Figs. 6 and 7 for both normalized microrotation and ve-

locity, respectively. As it is obvious analytic outcomes are 
in good agreement with numerical ones.  
 

Numerical solutions of governing coupled Eqs. (13) and 
(14) with boundary conditions (15) and (16) are obtained 
by finite difference FORTRAN code. Successive under 
relaxation (SUR) method is implemented to solve linear 
algebraic equations and the value of 0.1 is taken for un-
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der-relaxation parameter. The governing equations are 
discretized by applying second-order accurate central dif-
ference schemes. Grid independency was verified on dif-
ferent node numbers from 51 to 201 and finally the num-
ber of grid points is taken as 101 along the radius of ar-
tery. The convergence criterion (maximum relative error 
in the values of the dependent variables between two suc-
cessive iterations) was set at10-10. 
  
To obtain the additional viscosities coefficients, feed for-
ward multi-layer perceptron (MLP) type of artificial neu-
ral networks (ANN) and the result obtained in [30] is used 
in this work.  
 
5.1. Modeling using MLP-type neural networks 
An example of a MLP type of neural network with one 
input node, a single hidden layer with two neuron and one 
output neuron is shown in Fig.3.     
An additional input called bias with constant value of 1 is 
added to the previous input node which works as a shift 
operator. Each input node is related to each neuron in 
hidden layer by a connecting weight. The sum of the 
products of the weights and the inputs is calculated by 

each neuron in hidden layer and then treated by an activa-
tion function. The obtained result is then multiplied by the 
associated weight 3C and again the previous procedure 

will be repeated in the output neuron. In the present study 
hyperbolic tangent and linear functions are used as the 
activation functions in the hidden and output layers re-
spectively. 
 
The final output of the current network is calculated as 

( ) ( ) ( )1 1 2 1 1( )Network output NO F x F x F x= + =  (29) 
 

where, 
 

( ) ( )1 1 3 1 1 2tanhF x C C x C= +  (30) 

 
Once the number of layers and the number of neurons in 
each layer, have been selected, the network's weights 
must be adjusted to minimize the prediction error made 
by the network. This is the general role of the training 
algorithms. In this investigation Back-propagation (BP) 
method is applied to train the ANN which is the most 
widely used learning process in neural networks today. 

 
 

 
 
 

Figure 1. Components of a blood sample 
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Figure 2. a) X-ray tracing of portion of the femoral artery of a living dog. Ligated small branch arteries are marked 
port No. 1 and 2 [8], b) simplified model of artery. 

 

 
 

Figure 3. Architecture of a network with one hidden layer containing two neurons and one neuron in the out-
put layer 

 
 

 
 

Figure 4. A feed forward multi-layer perceptron type of neural network with one hidden layer. 
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Fig. 5.  Basic elements of an artificial neuron 
 

 

Figure.6 Microrotation profile along the radius 
 

Figure.7 Velocity profile along the radius 
 
Back-Propagation algorithm 
 

Back-propagation was firstly proposed by Werbos [33] 
which is based on searching an error surface (error as a 
function of ANN weights) using the gradient descent al-
gorithm for points with minimum error. 
Consider a network with one hidden layer and one output 
neuron as shown in Fig 4. 
 

When a set of input data (input vector) are propagated 
through the network, for the current set of weights there is 
an outputEst . The training of perceptron is a supervised 
learning algorithm where weights are adjusted to mini-
mize the absolute error between the estimated output Est  
of network and the desired outputDes whenever the es-
timated output does not match the desired output. If the 
network error (NE ) is defined as  
 
Network Error Est Des NE= − =  (31) 

 
The training algorithm should adjust the weights to mini-

mize 2NE . For this purpose an artificial neuron with its 
basic elements is considered as shown in Fig .5.  
 
The neuron consists of three basic components; weights, a 
summing junction and an activation function. The outputs 
of n  neurons 1,..., nNO NO  lead in neuronN as the in-

puts. If neuron N is in the hidden layer then this is the 
input vector of the network. These outputs are multiplied 
by the associated weights1 ,...,N nNW W . The summing 

junction adds together all these products to provide the 
input NI for activation function of neuronN . Then 

NI passes through the activation function ( )AF  and 

gives the final output of neuronN , which is NNO . To 

commence the calculations, consider neuron M  and 
weight MNW  which connects the two neurons. The equa-

tion for weight update is as follows: 
 

( )2

(adjusted) (old) .MN MN
MN

NE
W W LR

W

∂
= −

∂
 (32) 
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where LR is the learning rate parameter and 

( )2

MNNE W∂ ∂  is error gradient with reference to the 

weight MNW  . The chain rule gives 

 

( ) ( )2 2

N

MN N MN

NE NE I

W I W

∂ ∂ ∂=
∂ ∂ ∂

 (33) 

since the rest of the inputs to neuron N  are independent 

of the weight MNW we have 
 

1 2

n n

i iN i iN
N i M MN i

M
MN MN MN MN

NOW NOW
I NO W

NO
W W W W

= =

∂ ∂
∂ ∂= = + =

∂ ∂ ∂ ∂

∑ ∑
 

(34) 

Eqs. (32), (33) and (34) give   
 

( )2

(adjusted) (old) .MN MN M
N

NE
W W LR NO

I

∂
= −

∂
 (35) 

For the case N is an output neuron we have: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

22

2

2 2 2N
N

N N N

NE Est Des

NE AF IEst
Est Des NE NE AF I

I I I

∂ = ∂ − →

∂ ∂∂ ′= − = = ×
∂ ∂ ∂

 (36) 

Substituting Eq. (36) into Eq. (35) gives 
 

( ) ( )(adjusted) (old) . .2MN MN M NW W LR NO NE AF I′= − ×  (37) 

For hyperbolic tangent and linear activation functions ( )NAF I′  and the final form of weight update rule can be written 

as follows: 

for hyperbolic tangent:
( ) ( )

( ) ( )( )
2

2

(adjusted) (old)

1

. .2 1

N N

MN MN M N

AF I AF I

W W LR NO NE AF I

 ′ = − →  


= − × −    

     (38) 

for linear functions: 
( )

( )(adjusted) (old)

1

. .2

N

MN MN M

AF I

W W LR NO NE

′ =
 = −

 (39) 

 

WhenN  is a hidden layer neuron 

( ) ( )2 2

on N

N on N N

NENE I NO

I I NO I

∂∂ ∂ ∂=
∂ ∂ ∂ ∂

 (40) 

 

where the subscript on  represents the output neuron. In Eq. (40) we have 

( ) ( ) ,NN
N

N N

i N

i i on i i on
N N onon i i

N on
N N N N

AF INO
AF I

I I

NO W NO W
NO WI

W
NO NO NO NO

≠

∂∂ ′= =
∂ ∂

∂ ∂∂∂ = = + =
∂ ∂ ∂ ∂

∑ ∑
 (41) 

 
substituting Eq. (41) into Eq. (40) gives 

( ) ( ) ( )
2 2

N on N
N on

NE NE
W AF I

I I

∂ ∂
= ×

∂ ∂
 (42) 

 

In Eq. (42), ( )2
NNE I∂ ∂ is now written as a function of ( )2

onNE I∂ ∂ which was calculated in Eq. (36). 

Hence the weight update rule for a hidden layer neuron takes the following form 

( ) ( )
2

(adjusted) (old) .MN MN M N on N
on

NE
W W LR NO W AF I

I

∂
= − ×

∂
 (43) 
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The most common parameters for evaluation of a neural network’s performance are minimum total squared errors (or 
RMS error) and minimum total absolute error (or MAE error). MAE and RMS errors are defined as 

RMS error: 

( )2

1

n

i i
i

Des Est

n
=

−∑
 

(44) 

MAE error: 1

n

i i
i

Des Est

n
=

−∑
 

(45) 

 
where n  is the number of training data. The number of hidden layers and the neurons in each of them should be deter-
mined in a way to minimum the above errors. 
 

The velocity profile along the radius is shown in Fig. 6. The diagram shows that the velocity has a parabolic trend and 
change from maximum value at center to zero at the wall. Microrotation is illustrated in Fig. 7 and it shows that, it varies 
linearly along the radius.  
 

The maximum values of V  and ω  ( maxV , maxω ) can be obtained analytically by substituting 0r = and r R=  in Eqs. 

(27, 28) respectively as follows: 

( ) ( ) ( ) ( ) ( )
( )

( )
( )( )

22

max 0 1 2 3 2

2 2 2 2 2 2
3

21 1
0 0 0 0

2 2

1 1
2 4 4 4

2

z v v vz

v v v v

z v v v v v v v v

v v

R p k n kR p
V s s s s

k k

R p k nk k nk n k
k

µ
µ µ

µ µ µ
µ

− + −
= + + + = − −

+ +

− − + − + +
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Conclusions 
 

In this study a flow simulation respect to time and dimen-
sionless radius based on Cosserat model for a complex 
fluid like blood has been performed. ANN is applied to 
obtain the non-Newtonian coefficients. Using these val-
ues, the velocity and rotation profiles are calculated over 

radius of the artery are obtained. The obtained results 
show that, the maximum values of velocity occur in the 
inlet core; while, the maximum values of rotation happen 
near and on the boundary during systoles and diastoles.  
 
 
 



Evaluation of Steady Flow of Blood Through Artery 
 

Biomed  Res- India  2013 Volume 24 Issue 1                                                                  97 

References 
 
1. Oskooi H, Analysis of pulsatile blood flow in a elastic 

artery with respect to FSI point of view. PhD Thesis, 
Amirkabir University Technology, Iran 2007. 

2. Massoudi M, Phuoc TX. Pulsatile flow of blood using a 
modified second-grade fluid model. Computers and 
Mathematics with Applications 2008; 56: 199-211. 

3. Srivastava VP, Rastogi R. Blood flow through a 
stenosed catheterized artery: Effects of hematocrit and 
stenosis shape. Computers and Mathematics with Ap-
plications 2010; 59:  1377-1385. 

4. Srivastava VP, Rastogi R, Vishnoi R. A two-layered 
suspension blood flow through an overlapping stenosis. 
Computers and Mathematics with Applications 2010; 
60: 432-441. 

5. Ikbal MA, Chakravarty S, Mandal PK. Two-layered 
micropolar fluid flow through stenosed artery: Effect of 
peripheral layer thickness.Computers and Mathematics 
with Applications 2009; 58: 1328-1339. 

6. Schneck DJ. On the development of a rheological con-
stitutive equation for whole blood. Biofluid Mechanics 
1990; 3: 159-169. 

7. Yilmaz F, Mehmet YG, A critical review on blood flow 
in large arteries; relevance to blood rheology, viscosity 
models, and physiologic conditions. Korea-Australia 
Rheology Journal 2008; 20: 197-211. 

8. Merrill EW, Gilliland ER, Cokelet G, Shin H, Britten 
A, Wells RE, Rheology of Human Blood, near and at 
Zero Flow, Biophysical Journal 1963; 3: 199-213. 

9. Nakamura M, Sawada TJ. Numerical study on the flow 
of a non-Newtonian fluid through an axisymmetric 
stenosis. Journal of Biomechanical Engineering, Trans. 
of ASME 1988; 110: 137-143. 

10. Kamali R, Moayeri MS. Study of effects of non-
Newtonian properties of blood on flow parameters in 
aneurysms (in Persian). 6th Fluid Dynamics Confer-
ence: Tehran, Iran 1999, p.p. 25-27. 

11. Eringen AC. Microcontinuum field theories II: Fluent 
Media; Springer-Verlag: New York 2001. 

12. Atefi Gh, Moosaie A. Analysis of blood flow through 
arteries using the theory of micropolar fluids (in Per-
sian). 12th Iranian Conference on Biomedical Engi-
neering (ICBME), Tabriz, Iran 2005. 

13. Cosserate E, Cosserate F. Théorie des Corps Déform-
ables. A. Hermann et Fils: Paris 1909. 

14. Forest S. Cosserat media. In Encyclopedia of Materials, 
Science and Technology; Elsevier Science Ltd: New 
York 2001.p.p. 1715-1718. 

15. Moosaie A, Atefi Gh, A cosserate continuum mechani-
cal approach to steady flow of blood through artery. 
Journal Of Dispersion Science And Technology 2007; 
28: 765-768. 

16. Alexandru C, Systematik nichtlokaler kelvinhafter Flu-
ide vom Grade 2 auf Basis eines COSSERAT kontinu-
umsmodelles; VDI-Verlag, VDI-Fortschrittsberichte, 
1989 Reihe 18, Nr. 61. 

17. Sedaghatizadeh N, Atefi G, Fardad AA, Barari A, 
Soleimani S, Khani S. Analysis of blood flow through a 

viscoelastic artery using the Cosserat continuum with 
the large-amplitude oscillatory shear deformation 
model. Journal of Mechanical Behavior of Biomedical 
Materials 2011; 4: 1123-1131. 

18. Roy AS, Lloyd HB, Banerjee RK. Evaluation of com-
pliance of arterial vessel using coupled fluid structure 
interaction analysis. Molecular and Cellular Biology 
2008; 5: 229-245. 

19. Barari A, Omidvar M, Ghotbi AR, Ganji DD. Applica-
tion of homotopy perturbation method and variational 
iteration method to nonlinear oscillator differential 
equations. Acta Applicandae Mathematicae 2008; 104: 
161–171. 

20. Miansari MO, Miansari ME, Barari A, Domairry G. 
Analysis of Blasius equation for Flat-plate flow with 
infinite boundary value. International Journal for Com-
putational Methods in Engineering Science and Me-
chanics 2010; 11: 79-84. 

21. Barari A, Omidvar M, Ghotbi AR, Ganji DD. Assess-
ment of water penetration problem in unsaturated soils. 
Hydrology and Earth System Sciences Discussions 
2009; 6: 3811-3833. 

22. Omidvar M, Barari A, Momeni M, Ganji DD. New 
class of solutions for water infiltration problems in un-
saturated soils. Geomechanics and Geoengineering: An 
International Journal 2010; 5: 127 –135. 

23. Sfahani MG, Ganji SS, Barari A, Mirgolbabaei H, Do-
mairry G. Analytical solutions to nonlinear conserva-
tive oscillator with fifth-order non-linearity, Earthquake 
Engineering and Engineering Vibration 2010; 9: 367-
374. 

24. Kumar S, Singh OP. Numerical inversion of the abel 
integral equation using homotopy perturbation method. 
Z. Naturforsch. 2010; 65a: 677-682. 

25. Kumar S, Khan Y, Yildirim A. A mathematical model-
ling arising in the chemical systems and its approxi-
mate numerical solution. Asia Pacific Journal of 
Chemical Engineering DOI: 10.1002/apj.636, 2012. 

26. Kumar S, Singh OP, Dixit S. Homotopy perturbation 
method for solving system of generalized Abel’s inte-
gral equations. Applications and Applied Mathematics: 
An International Journal (AAM) 2011; 6: 268 – 283. 

27. Barari A, Kimiaeifar A, Domairry G, Moghimi M. 
Analytical evaluation of beam deformation problem us-
ing approximate methods. Songklanakarin Journal of 
Science and Technology 2010; 32: 207-326. 

28. Ganji DD, Bararnia H, Soleimani S, Ghasemi E. Ana-
lytical solution of the magneto-hydrodynamic flow 
over a nonlinear stretching sheet. Modern Physics Let-
ters B 2009; 23: 2541-2556. 

29. Bararnia H, Ghasemi E, Soleimani S, Barari A, Ganji 
DD. HPM-Padé method on natural convection of Dar-
cian fluid about a vertical full cone embedded in porous 
media. Journal of Porous Media, 2011; 14: 545–553. 

30. Otomori M, Yamada T, Izui K, Nishiwaki S. Level set-
based topology optimisation of a compliant mechanism 
design using mathematical programming. Mechanical 
Sciences 2011; 2: 91-98. 



Sedaghatizadeh/Barari/Soleimani/Mofidi 
 

Biomed  Res- India  2013 Volume 24 Issue 1                                                                  98

31. Ciocarlie M, Allen P. A constrained optimization 
framework for compliant underactuated grasping. Me-
chanical Sciences 2011; 2: 17-26. 

32. Werbos PJ, Beyond regression: New tools for predic-
tion and analysis in the behavioural sciences. Ph.D. 
Thesis, Harvard University 1974. 

 
 
Correspondence to: 
 

N. Sedaghatizadeh  
Department of Mechanical Engineering 
Iran University of Science and Technology 
Narmak, Tehran, Iran 
 


