

4th International Congress on DRUG DISCOVERY, DESIGNING AND DEVELOPMENT &

International Conference and Exhibition on BIOCHEMISTRY, MOLECULAR BIOLOGY: R&D

November 02-03, 2017 Chicago, USA

Rational design of guanylthiourea derivatives as antimalarial agents

Shweta Bhagat, Prasad V Bharatam and Minhajul Arfeen National Institute of Pharmaceutical Education and Research, India

Pasmodium falciparum dihydrofolate reductase (PfDHFR) enzyme is one of the validated targets for antimalarial drug discovery. The quadruple mutant of PfDHFR is resistant to the known anti-PfDHFR drugs (e.g. proguanil, pyrimethamine and trimethoprim). Recently, P218 was identified as a potential lead molecule. In this work, a rational drug design strategy was adopted to identify guanylthiourea (GTU) derivatives as a potential PfDHFR inhibitor. Electronic structure analysis of the GTU moiety was carried out to determine the correct tautomeric form which was 11.99 kcal/mol more stable than the previously reported structure in the literature. Once acceptable structure was established; *in silico* investigations on the wild type/quadruple mutant PfDHFR and various ligands (including

MESP analysis, molecular docking studies) were performed to design novel GTU derivatives as potential *Pf*DHFR inhibitors. Three series of GTU derivatives were synthesised, by reacting bromides with GTU under reflux and microwave condition. The synthesized compounds were first evaluated for *in vitro Pf*DHFR inhibitory activity, resulting in the identification of two compounds (100 μ M and 0.4 μ M). Further, *in vivo* studies recognized six compounds with high mean survival time, out of which one compound was identified to be curative. This work reports a systematic rational approach for the structure-based design of potential antimalarial agents.

e: bhagatshweta61@gmail.com

Notes:

J Pharmacol Ther Res 2017 Volume 1 Issue 2