International Conference on

Magnetism and Magnetic Materials

October 09-10, 2017 London, UK

Materials Science and Nanotechnology

Magnetic phase diagram of spatially anisotropic frustrated two-dimensional antiferromagnet

Vladimir Ilkovic

Bogoliubov Laboratory of Theoretical Physics JINR, Russian Federation

The new magnetic materials such as the layered oxide high-temperature superconductor can be well described by the Heisenberg spin model with nearest-neighbor (NN) antiferromagnetic coupling J_1 and next-nearest-neighbor (NNN) antiferromagnetic coupling J_2 . It is now well accepted that the model J_1 -- J_2 exhibits two phases displaying magnetic order at small J_2 , separated by an intermediate paramagnetic phase in

the interval $J_{c_1} < J_2 < J_{c_2}$. The ground state for $J_2 < J_{c_1}$ exhibits Neél magnetic order, whereas for $J_2 > J_{c_1}$ it exhibits collinear stripe order. A generalization of the frustrated $J_1 - J_2$ model is the $J_1^{\ x} - J_1^{\ y} - J_2$ model where $J_1^{\ y}$ is the directional anisotropy parameter. The nearest-neighbor bonds have different strength $J_1^{\ x}$ and $J_1^{\ y}$ in the x and y directions, respectively. The effect of the coupling $J_1^{\ y}$ on the Neél and stripe states is investigated. Our aim here is to further the study of this model by using the quantum many-body Green function method. It has been applied successfully to calculate with high accuracy the properties of many lattice quantum spin systems.

vilko@theor.jinr.ru