

2nd International Conference on

Materials Science and Engineering

February 25-26, 2019 | Paris, France

Investigation of the electronic structures and photoelectrical properties of cyanoacrylic dye on ZnTiO₃ perovskite for dye-sensitized solar cells

Ali Cheknane¹ and Kacem Cherifi²
¹Université Amar Telidji de Laghouat, Algeria
²University of Tlemcen, Algeria

The aggregation of sensitizers on a semiconductor is crucial for determining the light-harvesting efficiency of dye sensitized solar cells (DSSCs). The interfacial properties of dyes adsorbed on a ZnTiO₄ film, such as adsorption configurations and adsorption energy, can impact the total amount of dye sensitizers that loads and the stability of a DSSC device.

In this work ${\rm ZnTiO_3}$ perovskite was selected as a photoanode for DSSC. First principal calculation study based on the DFT

method has been used to study the adsorption energy of the Cyanoacrylic dye onto $\rm ZnTiO_3$ (101) and (110) surfaces. The electronic structures and photoelectrical properties of cyanoacrylic at $\rm ZnTiO_3$ complex are performed using the generalized gradient approximation approach (GGA-PBE), in order to treat the vend-wells interaction, DFT-D approach was applied in CASTEP code.

e: a.cheknane@lagh-univ.dz

