

6th World Congress on

Nanomaterials

January 13, 2022 | Webinar

First principles study of the 2D Mo(S1-XTeX)₂ TMD alloy: in bulk; Adsorbed on an Alterminated Sapphire; Between Layers of Graphene; on Graphite; and on GaN

Benjamin Burton

National Institute of Standards and Technology (NIST), USA

First principles based computational studies were performed for dichalcogenide alloys, mostly Mo(S,Te)₂, in bulk, adsorbed on Al-terminated sapphire, on graphite, and on GaN, and sandwiched between two layers of graphene. In bulk, predicted phase relations for Mo(S,Te)₂ and W(S,Te)₂ are dominated by phase separation, but when the Mo(S,Te)₂

alloy is in contact with sapphire, graphite, graphene, or GaN predicted phase relations are dominated by S:Te-ordering. The results of First Principles Phase Diagram (FPPD) calculations, binding energy calculations, and predicted band-gap variations, as functions of bulk composition, will be presented.