

2nd International Conference on

MAGNETISM AND MAGNETIC MATERIALS

September 24-26, 2018 | Budapest, Hungary

Guillermo Pozo et al., Mater Sci Nanotechnol 2018, Volume 2

ELECTROCHEMICALLY SYNTHESIS AND MAGNETIC PROPERTIES OF SPIN TRANSITION COMPOUNDS

Guillermo Pozo¹, P de la Presa^{2,3}, R Prato¹, P Marin^{2,3}, J Fransaer⁴ and X Dominguez-Benetton¹

¹VITO-Flemish Institute for Technological Research, Belgium ²Instituto de Magnetismo Aplicado, Spain ³KU Leuven, Belgium

Recently, a third fundamental state for magnetism (besides ferromagnetism and antiferromagnetism) was experimentally realized in a novel class of matter: the spin-liquid state, which was only possible after finding a way to synthesize herbertsmithite (ZnCu₂(OH)₆Cl₂). Here we introduce an electrochemically-driven method for synthesizing monodisperse nanoparticles of ZnxCu, (OH)6Cl, (in which x=1 for herbertsmithite, x=0 for clinoatacamite and 0.33<x<1 for paratacamite) at room temperature (18°C). The synthesis was carried out using a mixture of Cu²⁺ and Zn²⁺ ions as the metal precursors and O_a (in air) as the oxidant gas through a gas-diffusion cathode. Zero-field-cooled (ZFC) and field-cooled (FC) mass magnetization (M) in a field of 7.98 kA/m, over the temperature range of 2 to 300 K, showed a small ferromagnetic ordering below Tc ~ 6 K that is accompanied by bifurcation of FC data that are assigned to an impurity phase. There was less difference between zero-field and field cooled susceptibility, when the stoichiometric coefficient on the interlayer site was 1, which support a less spin-glass behavior. We believe that the extracted ferromagnetic hysteresis at T=2 K was caused by an impurity phase. As the purity of the herbertsmithite nanoparticles is increased, a clear distinction of the quantum spin liquid state is expected.

BIOGRAPHY

Guillermo Pozo has completed his PhD in Chemical Engineering at the University of Queensland, Australia. He is currently a Marie Curie Research fellow working at the VITO-Flemish Institute for Technological Research, Belgium.

guillermo.pozo@vito.be

