

11th International Conference on

CANCER STEM CELLS AND ONCOLOGY RESEARCH

Dublin, Ireland June 11-13, 2018 |

Thierry Virolle et al., J Med Oncl Ther 2018, Volume 3

DOCK4 PROMOTES LOSS OF PROLIFERATION IN GLIOBLASTOMA PROGENITOR CELLS THROUGH **NUCLEAR BETA-CATENIN ACCUMULATION AND SUBSECUENT** miR-302-367 CLUSTER EXPRESSION

Thierry Virolle 1,2,3, David Nicolas Debruyne 1,2,3, Laurent Turchi^{1,2,3,5}, Fanny Burel-Vandenbos^{1,2,3,4}, Mohamed Fareh^{1,2,3}. FabienAlmairac^{1,2,3}, Virginie Virolle^{1,2,3}, Dominique Figarella-Branger^{6,7,8}, Nathalie Baeza-Kallee^{6,7}, Patricia Lagadec^{1,2,3}. Valérie kubiniek⁹, Philippe Paquis^{1,2,3,5}, Denys Fontaine⁵. Marie-Pierre Junier^{10,11,12} and Hervé Chneiweiss^{10,11,12}

¹Université Côte d'Azur, France

²CNRS, France

³Inserm, France

⁴Service d'Anatomopathologie, Hôpital Pasteur, France

⁵Service de Neurchirurgie, Hôpital Pasteur, France

⁶Aix Marseille Université, France

⁷INSERM, France

⁸Departement de Pathology, CHU de la Timone, France

⁹Laboratory of Solid Tumors Genetics, University Hospital of Nice, France

¹⁰CNRS Neuroscience Paris Seine – IBPS, France

¹¹Inserm, France

¹²University Pierre and Marie Curie, Neuroscience Paris Seine – IBPS, France

► lioblastomas (GBM) are lethal primitive brain tumours characterized by a strong intra-tumour heterogeneity. We observed in GBM tissues the coexistence of functionally divergent micro-territories either enriched in more differentiated and non-mitotic cells or in mitotic undifferentiated OLIG2 positive cells while sharing similar genomic abnormalities. Understanding the formation of such functionally divergent micro-territories in glioblastomas (GBM) is essential to comprehend GBM biogenesis, plasticity and to develop therapies. Here we report an unexpected anti-proliferative role of beta-catenin in nonmitotic differentiated GBM cells. By cell type specific stimulation of miR-302, which directly represses cyclin D1 and stemness features, betacatenin is capable to change its known proliferative function. Nuclear beta-catenin accumulation in non-mitotic cells is due to a feed forward mechanism between DOCK4 and beta-catenin, allowed by increased GSK3-beta activity. DOCK4 over expression suppresses selfrenewal and tumorigenicity of GBM stem-like cells. Accordingly in the frame of GBM median of survival, increased level of DOCK4 predicts improved patient survival.

BIOGRAPHY

Thierry Virolle is a Research Director (permanent position) at Institut National de la Santé et de la Recherche Médicale (INSERM), Head of the Team Cancer Stem Cell Plasticity and Functional intra-tumor Heterogeneity at the Institute of Biologie Valrose (iBV). He is Co-Founder of the French National Sud Cancer Stem Cell Network, SUNRiSE dedicated to the study of cancer stem cell.

Virolle@unice.fr