

Materials Science and Materials Chemistry

August 20-21, 2018 | Paris, France

Catalytic effect of Ti-based additives on hydrogenation of MgH,

Kumari M

ENEA Casaccia Research Center, Italy

Various Ti-based additives (TiF₄, TiO₂ and TiH₂) were added to MgH₂ by ball milling and their catalytic effect on hydrogenation properties was investigated. All these additives significantly improved the dehydrogenation performances of MgH₂ but among them, TiF₄ shows best catalytic effect followed by TiO₂ and TiH₂ sequentially. The activation energy of dehydrogenation was calculated by using Kissinger's equation. The result shows that activation energy decreases from -170.48 kJ/mol for as- milled MgH₂ to -77.58 kJ/mol for MgH₂-TiH₂ and

further lowers to -75.50 kJ/mol to -70.82 kJ/mol for the MgH $_2$ –TiO $_2$ and MgH $_2$ -TiF $_4$. Thermogravimetric analysis (TGA) shows the onset desorption temperature of MgH $_2$ was also reduced by the addition of different Ti-based additives. XPS studies show that the catalytic effect of these additives on hydrogenation/dehydrogenation kinetics was due to by the formation of different active species.

e: jangirmukesh15@gmail.com