MAGNETISM AND

CALCULATION OF ANISOTROPIC EXCHANGE COUPLING CONSTANTS IN IRIDATES

Alexander Yaresko

Max Planck Institute for Solid State Research, Germany

Because of strong spin-orbit coupling within the Iridium 5 d shell magnetic interaction in Ir 4^{+}oxides cannot be described by an isotropic Heisenberg-like model and anisotropic exchange interactions become important. In a- $\mathrm{Na}_{2} \mathrm{IrO}_{3}$ and $a-\mathrm{Li}_{2} \operatorname{IrO} 3_{3}$, in which edge sharing IrO octahedra form a honeycomb lattice, magnetic interaction was suggested to be bond-dependent and to be described by the Kitaev model. Recently, another complex Ir oxide $\beta-\mathrm{Li}_{2} \operatorname{IrO}{ }_{3}$ has been synthesized which is expected to be close to forming a Kitaev spin liquid. Ir ions in this compound form a "hyper-honeycomb" lattice, a three-dimensional analogue of the honeycomb lattice of $\alpha-\mathrm{Na}_{2} \operatorname{IrO}$. In $\mathrm{Sr}_{2} \operatorname{IrO}_{4}, \mathrm{Sr}_{3} \mathrm{Ir}_{2} \mathrm{O}_{7}$ and in $\mathrm{R}_{2} \mathrm{Ir}_{2} \mathrm{O}_{7}$ compounds, where R is a rare-earth ion, with the pyrochlore structure, on the other hand, the dominant anisotropic exchange is the anti-symmetric Dzyaloshinskii-Moriya interaction. We present results of LSDA+U band structure calculations for $\mathrm{Na}_{2} \mathrm{IrO}_{3}, \mathrm{Sr}_{2} \mathrm{IrO}_{4}$, and some $\mathrm{R}_{2} \mathrm{Ir}_{2} \mathrm{O}_{7}$ iridates. The strength of the Coulomb repulsion U is adjusted by comparing the calculated optical conductivity to experimental optical spectra. Then, magnetic interactions in these compounds are estimated by mapping the total energy calculated for various non-collinear magnetic configurations constrained by magnetic symmetry onto an effective model which includes isotropic Heisenberg-like as well as bond-dependent anisotropic magnetic interactions. It is shown that the variation of the total energy cannot be described by the isotropic Heisenberg-like model and anisotropic terms may be as strong as the isotropic ones.

