

International Conference on

CELL AND GENE THERAPY

World Congress on

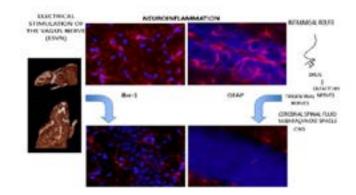
CLINICAL AND MEDICAL MICROBIOLOGY

ጲ

September 10-11, 2018 | Dublin, Ireland

Biomed Res 2018, Volume 29 | DOI: 10.4066/biomedicalresearch-C3-008

NEW EFFECTIVE THERAPEUTIC APPROACHES TO CONTROL NEUROINFLAMMATION IMPROVE SEVERAL NEUROPATHOLOGIES


Meneses G¹, Rassy D¹, Espinoza A¹, Esteban Ponciano J A¹, Perez-Osorio N¹, Bárcenas B¹, **Olvera M¹**, Besedovsky H², Fragoso G¹ and Sciutto E¹ ¹UNAM, Mexico ²Philipps University, Germany

Statement of the Problem: Even though acute, transient neuroinflammation (NI) is a beneficial defensive response to harmful stimuli, sustained NI can lead to pathological conditions. NI is a common trait in many infectious and non-infectious neurological diseases and may promote their onset and progression. Its role in sepsis, Parkinson disease, stroke, and multiple sclerosis places NI as a new common therapeutic target. Controlling subacute and chronic NI may help to restore CNS physiology and homeostasis; however, NI is currently treated only during multiple sclerosis crises, being unattended in other diseases. The absence of an adequate anti-inflammatory response may explain the scarce research on this approach.

Methodology & Theoretical Orientation: The potential of electric stimulation of the vagus nerve (ESVN) and intranasal administration of glucocorticoids were studied in models of sepsis (LPS-treated mice), Parkinson disease (induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MPTP), ischemic stroke (induced by middle cerebral artery occlusion, MCAO), and multiple sclerosis (autoimmune encephalomyelitis elicited by the myelin oligodendrocyte glycoprotein peptide 35-55).

Findings: Both ESVN and intranasal steroid administration effectively reduced central levels of TNFα, IL-1β, and IL6 (measured by ELISA) and the percentage of CD11b+/CD45 macrophages/microglial cells (measured by FACS). ESVN also reduced the expression of Iba-1 in the cortex and hippocampus. ESVN reduced astrocyte activation (GFAP) and restored the expression of tyrosine-hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNc). Intranasal administration of dexamethasone significantly reduced mortality in the stroke model. Moreover, intranasally-treated mice exhibited lower morbidity and central inflammation, and a reduced size of the ischemic lesions. In multiple sclerosis, the intranasal route was more effective than intravenous in improving EAE-associated morbidity.

Conclusion & Significance: Our results highlight the possibility of reducing NI in several neuropathologies, restoring homeostasis more efficiently than current treatments.

International Conference on

CELL AND GENE THERAPY

World Congress on

CLINICAL AND MEDICAL MICROBIOLOGY

&

September 10-11, 2018 | Dublin, Ireland

Recent Publications

- Meneses G, Bautista M, Florentino A, Díaz G, Acero G, Besedovsky H, Meneses D, Fleury A, Del Rey A, Gevorkian G, Fragoso G, Sciutto E (2016). Electric stimulation of the vagus nerve reduced mouse neuroinflammation induced by lipopolysaccharide. J Inflamm (Lond). 13: 33.
- Jackson-Lewis V, Lester D, Kozina E, Przedborski S, Smeyne RJ (2015). From man to mouse: the MPTP model of Parkinson's disease. In: LeDoux M, editor. Movement disorders: genetics and models. 2nd ed. Amsterdam: Elsevier. DOI: 10.1016/ B978-0-12-405195-9.00017-2.
- 3. Bittner S, Afzali AM, Wiendl H, Meuth SG (2014). Myelin oligodendrocyte glycoprotein (MOG35-55) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. J Vis Exp. (86): 51275.