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Abstract

Objectives: Three-dimensional Arterial Spin Labeling (ASL) and Voxel-Based Morphometry (VBM)
methods were used to demonstrate whole-brain perfusion and gray matter volume abnormalities after
Radiotherapy (RT) for Nasopharyngeal Carcinoma (NPC).
Methods: Fifty participants with NPC were divided into Pre-RT Control (PC), Acute Reaction Period
(ARP), and Delayed Reaction Period (DRP) groups based on the course of RT. A Region of Interest
(ROI) based analysis was performed on the Cerebral Blood Flow (CBF) and anatomic data.
Results: Compared with the PC group, increased perfusion in the left cerebellum, left paracentral
lobule, and bilateral thalamus was noted in the ARP group (p<0.05), while patients in the DRP group
showed no significant differences when compared to the other two groups (p>0.05). The relative Gray
Matter Volume (rGMV) was decreased in the right paracentral lobule in the ARP group, but increased
in the bilateral cerebellum in the DRP group compared to the PC group, and increased in the left
cerebellum, bilateral cerebellum and right paracentral lobule in the ARP group as well (all p<0.05).
Moreover, the CBF was negatively correlated with the rGMV in several specific brain areas (p<0.05).
Conclusion: ASL facilitated non-invasive detection of radiation-induced whole-brain gray matter
perfusion changes, which were transient, dynamic, complicated, and negatively correlated with the
GMV.
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Introduction
Radiotherapy (RT) plays an indispensable role in the curative
treatment for patients with Nasopharyngeal Carcinoma (NPC).
However, the brain tissue is quite vulnerable to radiation,
which is inevitably contained within the radiation field.
Therefore, acute and late effects of RT on the brain tissue are
frequent [1]. Numerous studies have adopted special MRI
methods to investigate minor changes in temporal White
Matter (WM) or whole brain after RT [2-5]. However, few

studies have explored the global Cerebral Blood Flow (CBF)
or Gray Matter (GM) changes. Thus, whole brain perfusion
and structural alterations in NPC patients undergoing RT are
unclear, as is the relationship between CBF and GM changes.

CBF is an important physiologic parameter for investigating
brain perfusion and function [6]. By employing endogenous
arterial blood water as a tracer, three-dimensional Arterial Spin
Labeling (ASL) can provide reliable and non-invasive CBF
measurements, and is thus a great choice to measure CBF in
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humans [7,8]. Voxel-Based Morphometry (VBM) assesses
Gray Matter Volume (GMV) voxel-by-voxel, and has been
used extensively in structural investigations [9-12]. The
objective of the current study was to use a new three-
dimensional fast spin echo pseudo-continuous ASL (3D FSE
pCASL) MRI sequence to detect perfusion distribution
abnormalities in the whole brain caused by RT for NPC and
explore the relationship with gray matter changes, and to
supplement imaging evidence of hemodynamically-related
pathophysiology for brain tissue impairment induced by RT.

Materials and Methods
This study was conducted according to the World Medical
Association Declaration of Helsinki. The local Medical Ethics
Committee approved the study. After the procedures of the
study were explained, written informed consent was obtained
from all individuals.

Subjects
A total of 50 patients pathologically-diagnosed with NPC
based on biopsy were enrolled. All participants were Hans,
right-handed, and divided into pre-RT control (PC (before
RT)), acute reaction period (ARP (received the first RT in the
past 1-6 months)), and delayed reaction period (DRP (received
the first RT in 7-24 months)) groups. The exclusion criteria
were as follows: patients diagnosed with intracranial primary
tumors; a history of intracranial surgery or head injury that
could affect brain perfusion; left-handedness; and routine MRI
abnormalities or contraindications for MRI. The routine MRI
images were examined by two experienced neuro-radiologists.

Imaging protocol
A general electric 3.0 Tesla HD Signa Excite scanner with an
8-channel phased array head coil was used to obtain ASL
images, structural and routing protocol images from all 56
participants. ASL images were obtained with a 3D FSE
pCASL sequence (bandwidth=± 62.5 kHz, TR/TE=1,350/5,
flip angle=155°, thickness=4 mm, post-label delay time=1,525
ms, image reconstruction matrix=128 × 128, field of view=24
cm, and number of excitations (NEX)=3). Whole brain
anatomic images were acquired using a high-resolution (1 × 1
× 1.2 mm voxel) reference axial 3D brain volume imaging
(3D-BRAVOYTM; GE Healthcare, American) sequence (TR/
TE=10/7, TI=300 ms, flip angle=15°, NEX=1). A T2-weighted
fluid-attenuated inversion-recovery (T2-Flair) sequence was
acquired to examine brain matter abnormalities (TR/
TE=5,000/72.5).

A total of 248 anatomic images, 76 ASL images scanned by
MRI and 38 CBF maps automatically generated based on ASL
data for each patient were acquired for further data analysis.
Participants were asked to remain still with their eyes closed in
the scanner.

Data analysis
One of the authors performed image pre-processing using
Statistical Parametric Mapping software (SPM8; Welcome
Department of Cognitive Neurology, UK http://
www.il.ion.ucl.ac.uk/spm/), VBM8 based on MATLAB (Math
Works, Natick, MA, USA), and the Resting-state fMRI Data
Analysis Toolkit (REST 1.8; http://www.restfmri.net/forum/?
q=rest13). For each participant, ASL images were pre-
processed as follows: the original image was converted to
Neuroimaging Informatics Technology Initiative (NIFTI)
format; the image quality was checked and individuals with
low SNR were eliminated; 3D T1 image data were transformed
into Montreal Neurologic Institute (MNI) space and segmented
into White Matter (WM), GM, and Cerebral Spinal Fluid
(CSF) and a T1 brain tissue image was created; CBF maps
were accurately co-registered with the structural T1 brain
images and spatially normalized into a standard stereotaxic
space, and during this process, the final CBF maps were
resampled to a 2 × 2 × 2 mm3 isotropic voxel size; CBF maps
were converted into z-score maps to control individual
hemodynamic variation and spatially smoothed with a 4-mm
isotropic Gaussian kernel to normalize CBF maps as required
and CBF values were extracted by means of anatomic Regions
of Interest (ROIs), which were defined by Anatomic Automatic
Labeling (AAL) templates ( Figure 1).

Figure 1. ROIs defined by AAL using REST. ROIs with different
colors in 3 planes. Abbreviations: ROI: Region of Interest; AAL:
Anatomical Automatic Labeling; REST: Resting-State fMRI Data
Analysis Toolkit.

Three-dimensional structural images were processed using a
toolbox for Data Processing and Analysis for Brain Imaging
(Dpabi; http://rfmri.org/dpabi14) based on the VBM8 toolbox
and Diffeomorphic Anatomical Registration Exponentiated Lie
Algebra (Dartel) software. The VBM procedure involves the
segmentation of the original anatomic MRI images in GM,
WM, and CSF tissues, followed by GM image normalization to
templates in stereotactic space to acquire optimized
normalization parameters, which were applied to the raw
images. Then, GM images were smoothed using a 6-mm full
width at a one-half maximum (FWHM) isotropic Gaussian
kernel. Finally, the relative GM volume (rGMV) was extracted
by means of ROIs for further statistical analysis.
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Statistical analysis
All data were represented as means ± SD (± s) of three or more
independent experiments. If the data are homogenous, Analysis
of variance, Student-Newman-Keulsa and Pearson’s correlation
will be used. If the data are not homogenous, Kruskal-Wallis,
Games-Howell test, as well as Spearman Rank Correlation
analysis will be used. All the analyses were carried out using
the SPSS19.0 software (SPSS Inc., Chicago, IL, USA). Values
less than 0.05 were considered to be statistically significant.

Results

Demographics
Table 1 shows that all groups were essentially of equal mean
age, and had a similar distribution of gender and education
level (all p>0.05).

Whole-brain GM perfusion difference
When compared with the PC group, patients in the ARP group
had higher perfusion in the left cerebellum_8, left
cerebellum_crus_2, left paracentral lobule, and bilateral
thalamus (all p<0.05). However, the DRP group had no
significant statistically difference with other groups (all
p>0.05), as shown in Table 2.

Gray matter volume difference
As show in Table 3, the rGMV of patients in the ARP group
decreased more than the PC group in the right paracentral

lobule, and increased in the DRP group in the bilateral
cerebellum_crus_2 (all p<0.05). In addition, when compared
with the ARP group, the VBM showed that the GM was
expanded in the DRP group in the left cerebellum_8, bilateral
cerebellum_crus_2, and right paracentral lobule (all p<0.05).

Correlation between the CBF and GMV
As shown in Table 4, the whole brain GM, left cerebellum_8,
right cerebellum_8, left cerebellum_crus_2, left hippocampus,
right hippocampus, left parahippocampus, right precuneus, left
temporal_pole_mid, and right thalamus had negative
relationships between the CBF value and rGMV (all p<0.05).

Table 1. Demographic summary of participants enrolled in the study.

N PC ARP DRP Statistic value

20 16 14

Age (y) 52.00 ±
14.04

51.00 ±
10.05

47.64 ±
13.09

F=0.492,
P=0.615

Gender (Female/
male)&

43952 42491 41671 χ2=1.172,
p=0.556

Education (y)* 7.20 ±
4.34

6.84 ± 3.42 9.36 ± 3.30 F=1.923,
P=0.158

Data are presented as mean ± SD. *p>0.05 for one-way analysis of covariate.
&p>0.05 for χ2 test applied to gender. Abbreviations: PC: Pre-radiation therapy
Control; ARP: Acute Reaction Period; DRP: Delayed Reaction Period.

Table 2. CBF differences among the three groups.

Region name CBF Statistic value (p) 

PC ARP DPR ARP-PC DRP-PC ARP-DRP

Left cerebellum_8* 46.73 ± 12.21 57.42 ± 16.05 50.67 ± 13.68 0.027 - -

Right cerebellum_8* 45.10 ± 10.96 53.63 ± 14.90 47.51 ± 13.53  - -

Left cerebellum_crus_2* 48.59 ± 13.65 60.48 ± 15.38 51.30 ± 16.92 0.024 - -

Left cerebellum_crus_2 40.96 ± 10.47 49.22 ± 13.97 42.91 ± 12.90  - -

Left hippocampus* 47.76 ± 11.02 53.37 ± 8.65 50.96 ± 8.28 - - -

Right hippocampus* 46.06 ± 9.81 51.34 ± 9.62 49.04 ± 8.67 - - -

Left paracentral lobule 45.63 ± 10.00 54.07 ± 12.85 52.34 ± 12.02 0.034 - -

Right paracentral lobule 46.81 ± 10.94 54.26 ± 13.06 50.61 ± 11.42  - -

Left parahippocampus* 48.83 ± 10.57 53.40 ± 9.20 52.61 ± 8.92 - - -

Right parahippocampus 47.46 ± 9.25 52.29 ± 10.05 51.73 ± 10.06 - - -

Left precuneus 56.50 ± 16.76 65.55 ± 16.35 62.16 ± 15.00 - - -

Right precuneus* 51.81 ± 14.86 60.62 ± 14.12 54.68 ± 12.85 - - -

Left temporal_pole_mid* 46.05 ± 13.28 49.12 ± 9.00 48.34 ± 7.96 - - -

Right temporal_pole_mid 43.25 ± 10.44 47.30 ± 9.00 45.88 ± 8.22 - - -
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Left thalamus 45.22 ± 10.92 53.96 ± 11.91 50.30 ± 13.75 0.036 - -

Right thalamus 46.63 ± 9.78 56.16 ± 13.20 51.33 ± 13.33 0.022 - -

rGMV are presented as mean ± SD. *p<0.05 for One-way ANOVA, followed by post hoc T-test. Abbreviations: PC: Pre-radiation therapy Control; ARP: Acute Reaction
Period; DRP: Delayed Reaction Period; CBF: Cerebral Blood Flow.

Table 3. rGMV differences among the three groups.

Region name rGMV Statistic value (p)

PC ARP DPR ARP-PC DRP-PC ARP-DRP

Left cerebellum_8* 0.331 ± 0.049 0.316 ± 0.039 0.350 ± 0.032 - - 0.032

Right cerebellum_8* 0.354 ± 0.045 0.354 ± 0.042 0.377 ± 0.032 - - -

Left cerebellum_crus_2* 0.420 ± 0.048 0.425 ± 0.048 0.469 ± 0.046 - 0.006 0.015

Left cerebellum_crus_2 0.363 ± 0.047 0.361 ± 0.042 0.405 ± 0.040 - 0.007 0.009

Left hippocampus* 0.469 ± 0.047 0.454 ± 0.038 0.481 ± 0.030 - - -

Right hippocampus* 0.422 ± 0.038 0.415 ± 0.029 0.430 ± 0.024 - - -

Left paracentral lobule 0.231 ± 0.029 0.225 ± 0.035 0.229 ± 0.026 - - -

Right paracentral lobule 0.258 ± 0.034 0.231 ± 0.036 0.257 ± 0.032 0.02 - 0.031

Left parahippocampus* 0.509 ± 0.054 0.486 ± 0.042 0.519 ± 0.036 - - -

Right parahippocampus 0.525 ± 0.051 0.504 ± 0.039 0.529 ± 0.025 - - -

Left precuneus 0.375 ± 0.047 0.365 ± 0.044 0.382 ± 0.035 - - -

Right precuneus* 0.383 ± 0.044 0.377 ± 0.037 0.390 ± 0.031 - - -

Left temporal_pole_mid* 0.432 ± 0.069 0.410 ± 0.045 0.412 ± 0.047 - - -

Right temporal_pole_mid 0.376 ± 0.054 0.357 ± 0.042 0.360 ± 0.034 - - -

Left thalamus 0.232 ± 0.019 0.230 ± 0.028 0.244 ± 0.020 - - -

Right thalamus* 0.249 ± 0.019 0.245 ± 0.028 0.257 ± 0.016 - - -

rGMV are presented as mean ± SD. *p<0.05 for One-way ANOVA, followed by post hoc T-test. Abbreviations: PC: Pre-radiation therapy Control; ARP: Acute Reaction
Period; DRP: Delayed Reaction Period; rGMV: Relative Gray Matter Volume. 

Table 4. Correlative analysis of CBF and rGMV in the subjects.

Region name Statistic value

R p

Whole brain GM* -0.348 0.007

Left cerebellum_8* -0.328 0.01

Right cerebellum_8* -0.273 0.028

Left cerebellum_crus_2* -0.31 0.014

Left cerebellum_crus_2 - -

Left hippocampus* -0.441 0.001

Right hippocampus* -0.548 0

Left paracentral lobule - -

Right paracentral lobule - -

Left parahippocampus* -0.313 0.013

Right parahippocampus - -

Left precuneus - -

Right precuneus* -0.271 0.028

Left temporal_pole_mid* -0.237 0.049

Right temporal_pole_mid - -

Left thalamus - -

Right thalamus* -0.325 0.011

CBF and rGMV are presented as mean ± SD. *p<0.05 for correlative analysis
(age and education years as covariates). Abbreviations: PC: Pre-radiation
therapy Control; ARP: Acute Reaction Period; DRP: Delayed Reaction Period;
CBF: Cerebral Blood Flow; rGMV: Relative Gray Matter Volume.

Discussion
A series of studies have explored microstructural changes in
brain tissues induced by RT in NPC patients using MRI
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methods, including Diffusion Tensor Imaging (DTI)
[2-5,13-15] and proton magnetic resonance spectroscopy (1H-
MRS) [5,16]. Most of the studies investigating brain tissue
changes have been limited to the temporal lobe. Specifically,
studies using 1H-MRS has suggested that the N-acetyl
aspartate (NAA)/creatine (Cr), choline (Cho)/Cr and NAA/Cho
ratios decreased during the early delayed reaction, then
increased similar to pre-RT [3,16]. Another study using DTI
reported that the fractional anisotropy (FA) value decreased
after RT. However, the Apparent Diffusion Coefficient (ADC)
value significantly increased [4] in the whole brain, and
extensively in white matter after RT. The Mean Diffusion
(MD) values increased were in numerous brain areas [2]. All of
the above studies suggested early and dynamic micro-injuries
of nerve tissue after RT in the temporal region or whole brain;
however, few studies have explored whole brain CBF and gray
matter volume abnormalities.

In the current study, the ASL method was utilized to assess RT-
induced perfusion alterations in NPC patients. A high
perfusion pattern in the ARP group was observed in the left
cerebellum_8, left cerebellum_crus_2, left paracentral lobule
and bilateral thalamus. The physiopathology leading to brain
perfusion changes may be multifactorial, including
mitochondrial disturbances, vascular abnormalities, and
inflammatory factors, which widely affect the brain in the long
term [17-20]. The cerebellum and thalamus are close to the
target area of RT, thus we speculate that the brain gray matter
showing high perfusion may be directly induced by radiation.
Recent animal studies have confirmed that brain blood vessels
expand by radiation during the acute period, and may be lead
to hyperperfusion [1,21]. However, only the right paracentral
lobule had a decreased rGMV at that point in time, which
indicated that high perfusion did not result in a larger GM
volume.

In the DRP group, perfusion was gradually restored to near the
level of the PC group; no significant difference was observed
with the other groups. When compared with the ARP group;
however, VBM detected expansion of the GM in the left
cerebellum_8, bilateral cerebellum_crus_2 and right
paracentral lobule in the DRP group. The results further
established that the increase in cerebral rGMV in the DRP
group was not caused by high cerebral perfusion, but may be
due to other reasons, such as enlargement or increase in nerve
cell or stromal element size. This finding was verified by
further correlation analysis showing that the CBF and rGMV
were negatively related.

Both animal experiments and a functional imaging study
confirmed that brain morphology may change to adapt to
function [22]. Brain perfusion alterations may also be
associated with cortical thickness abnormalities [23]. Although
CBF and rGMV abnormalities were observed and showed a
negative relationship in several specific areas in the current
study, other studies have suggested that increased cortical
thickness may involve higher brain perfusion [24]. Therefore,
the mechanism of how RT influences brain perfusion and
structure appears to be complicated. In functional brain

disorders, perfusion pattern changes can occur independently
of anatomic changes or precede anatomic changes which were
established in the current study [7].

Tools of measuring brain CBF, such as dynamic susceptibility
contrast-enhanced perfusion-weighted imagine (DSC-PWI),
H2O15 Positron Emission Tomography (PET) and ASL are
important methods in investigating brain pathophysiology and
function [25-27]. Because of non-invasive features, several
important technical improvements, such as ASL, it is currently
possible to easily obtain whole-brain perfusion parameters,
thus becoming a good choice for disease screening and routine
longitudinal tracking clinically and for research purposes
[28,29]. ASL is comparable to DSE-PWI with respect to CBF,
and also reveals similar brain activity patterns to PET [30,31].
Furthermore, ASL has several advantages over PET or DSC-
PWI, such as avoiding potentially harmful exogenous tracers,
higher spatial and temporal resolution, and less susceptibility
to the effects of Blood-Brain Barrier (BBB) permeability
changes [7,30,32-34]. In addition, the current study adopted a
new pCASL method based on the 3D-FSE sequence with spiral
readout to increase SNR and reduce motion artefact and
susceptibility distortion [35,36]. Due to the prominent labeling
efficiency, superior SNR and lower inter-subject variability
than conventional ASL, pCASL has become the best choice for
brain perfusion and functional studies [7,37,38].

There were limitations in our research. First, CBF might be
affected by chemotherapeutics, thus further research should
take this into consideration. A further voxel-by-voxel analysis
should be performed to acquire more accurate overall results.

This study suggests that early, transient, and complicated brain
perfusion and GMV abnormalities caused by RT for NPC,
which may be due to the micro-injuries of brain vascular and
nerve tissues. No similar reports exist and therefore more
research is required to confirm our results. Moreover, our
research indicates that the new 3D FSE pCASL technique
allows a complete exploration of global brain perfusion
abnormalities induced by RT, and a more widely available
clinical application in the future.
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