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Introduction
Translational Research (TR) seems to be occupying the center 
of health research at the turn of the century. It was initiated 
in United States of America (USA), but has spread quickly 
throughout the world. When it was originated, the term TR 
was associated with research conducted at the National Cancer 
Institute (NCI) and only in the first decade of this century was 
it expanded to other fields of health research. In 2003, the 
National Institutes of Health (NIH) published the results of 
a broad national survey conducted in 2002 and addressed to 
the scientific community with the goal of guiding a long-term 
policy [1]. The research identified three major targets, one of 
them called "Reengineering the Clinical Research Enterprise". 
This objective highlighted, among other actions, the promotion 
of the "establishment of academic environments for clinical and 
translational research". The next step was taken in 2006, with 
the creation, at the NIH, of a line of institutional promotion 
specifically linked to this goal, the "Clinical and Translational 
Science Awards" (CTSA). Finally, in 2012, a new NIH unit was 
created, specifically dedicated to support the creation of TR-
oriented research centers, the "National Center for Advancing 
Translational Sciences" (NCATS) [2]. A proof of this is that 
in that same year, Wilson Tang WH et al. published a NIH-
funded article using TR and concluding that the metabolite 
TriMethylAmine-N-Oxide (TMAO) obtained from dietary 

phosphatidylcholine is dependent of (metabolized by) gut 
microbiota, and that there is a relationship between increased 
levels of TMAO and increased risk of adverse cardiovascular 
events, which is a clear evidence of interaction of the intestinal 
microbiota with the gut-brain axis [3].

Interactions Gut Microbiota-Host
Over the years, it was observed that the gut microbiota has 
been associated to initiate and develop several diseases and 
conditions, including intestine disorders, CNS diseases and 
different systemic diseases [4-7]. The gut, as the body's largest 
immune organ, harbors trillions of bacteria. The genome of 
all microorganisms in the gut microbiota contains 150 times 
more genes than the human genome [8]. All these genes have 
a fundamental impact on host health, because of how they 
affect IS homeostasis, production of essential nutrients for the 
organism and protection against pathogenic germs [9]. Thus, 
the gut microbiota play a key role of variable in the way, the 
organism interacts and how it responds to its environment. It 
also plays an important role in the mechanism by which the 
host is affected and responds to environmental stimuli. This 
constant symbiotic action of the gut microbiota is crucial for the 
maintenance of the intestinal homeostasis. The Gut Associated 
Lymphoid Tissue (GALT) has its immune preparation initiated 
and based on this interaction. GALT supplies activated immune 
cells to the intestinal epithelium and to the lamina propria, due 
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the way they interact with the gut microbiota [10]. Even when 
healthy, several lymphocytes and other immunity effector cells 
reside in the intestinal tissues, to react with and/or tolerate the 
gut microbiota. Therefore, gut microbiota plays a critical role 
by determining several immunological responses and several 
other signalling events in the host. It has been demonstrated the 
relevance of maintaining the intestinal and systemic homeostasis 
tightly controlled by regulatory immunity mechanisms, which 
are determined by interactions between trillions of beneficial 
microbes, gene microbial-derived products, and pattern 
recognition receptors (PRRs). Disruption of this balance by 
hostile signals has significant consequences that can result in 
many diseases. Therefore, fragmentation of this interaction may 
result in many diseases [11]. Published results from the Human 
Microbiome Project have shown that thousands of microbes 
inhabit our intestines. Although they present wide variation in 
composition between individuals, microbial genes involved in 
maintaining basic metabolic activities are functionally similar 
among individuals [12]. 

Several studies have identified the existence of one group 
of commensal bacteria genera, including Lactobacillus, 
Clostridium, Bifid bacterium, Bacteroides, Streptococcus and 
Enterobacterium [7,13]. Moreover, the composition of the 
microbiota in the intestines is a dynamic process that can be 
affected by several factors, including maternal breastfeeding, 
gastrointestinal infections, genetics, age, stress and medications 
[14]. Type of diet profoundly affects the intestinal microbiota, 
and studies in humans and animals have shown modifications 
in the microbial composition of individuals using various diets. 
For example, one study compared traditional Western lifestyle 
with individuals who consume African diet showed differences 
in bacterial profiles [15].

The diet can have even more pronounced impact when probiotics 
are offered. The administration of live microorganisms in 
adequate quantities gives health benefits [16].

Probiotics are used in long-term bases consumption and, when 
administered in foods containing sufficient amounts to safely 
reach the gastrointestinal tract, offer health benefits. Currently, 
the number of publications about the synbiotic kefir is growing; 
originally consumed by communities in the Caucasus Mountains. 
The drink has a slightly viscous texture with acid taste, low 
levels of alcohol and, in some cases, slight carbonation. The 
most studied kefir is made with cow's milk, although it can be 
made from milk from other sources, animals and vegetables 
[17-20]. One of the characteristics that distinguish kefir from 
many other fermented dairy products is the requirement for the 
presence of kefir grains in the fermentation process, as well 
as the presence of a large population of yeasts [21,22]. The 
potential benefits of kefir has motivated enormous interest in 
the scientific community due to important properties, including 
better digestion and tolerance to lactose, anti-inflammatory 
effect, reducing cholesterol, glucose, hypertension, antioxidant, 
anticancer activity and antiallergic [23-30]. In addition to 
recovering vascular endothelium from SHR rats with kefir 
treatment for 60 days, for partially restoring ROS / NO imbalance 
and endothelial architecture due to recruitment of endothelial 
progenitor cells [31]. Obviously, changes in homeostasis with 
infections and diseases affect the composition of the intestinal 

microbiota and, consequently, could cause damage to the 
host. For example, imbalances of the intestinal microbiota 
in young rats lead to an instance, in the threshold of visceral 
pain, a stress-related trait, as in irritable bowel syndrome [32]. 
Changes in intestinal microbiota have also been associated with 
inflammatory bowel disease and obesity [33]. In addition, the 
use of assorted medications such as antibiotics, antacids and 
H2 blockers may profoundly affect the intestinal microbiota 
[34,35]. Intestinal dysbiosis can result from these situations and 
is usually characterized by a change in symbiosis between this 
bacterial population and the growth of harmful bacteria) [36]. 
The presence of certain metabolites in the intestinal lumen may 
select disobeying microbes, resulting in insulin resistance and 
abnormally low levels of short chain fatty acids (SCFAs), among 
other metabolic disorders [37,38]. Inflammatory bowel diseases 
(IBD), which are associated with chronic intestinal inflammation 
and the loss of the intestinal barrier attributed to dysbiosis [39]. 
In addition to the role of prebiotics in promoting the growth 
of certain beneficial bacteria (typically Bifidobacterium and 
Lactobacillus), they further promote reduction of pathological 
permeability (hyperpermeability) and intestinal inflammation 
[40,41].

Gut-brain axis

The human gastrointestinal tract houses a population of germs 
with more than anaerobic bacteria, yeasts, fungi and viruses 
[42]. Bacterial colonization in the gastrointestinal tract depends 
on several factors, including type of delivery and method of 
postnatal feeding [43,44]. Subsequently, gut microbiota is 
transferred from mother to child and its composition may be 
affected over time by various environmental factors, such as 
diet, use of antibiotics, environmental contamination, exposure 
to microorganisms, among others, thus increasing the risk 
of bacterial imbalance. This condition is also known as gut 
dysbiosis and is characterized by the substitution of healthy 
intestinal flora by one that is harmful to the host’s health, which 
can negatively influence the central nervous system in several 
intertwined ways that, together, form the gut-brain axis.

The connection between the gastrointestinal tract and the CNS 
is well established and thoroughly studied, demonstrating that 
it is essential for intestinal modulation, immunological, health 
maintenance, and neurological, hormonal, immunological and 
metabolic signaling. Disturbances in this intense exchange 
of information can result in compromising one's health [45]. 
For example, changes in host behavior may be related to gut 
inflammation, which leads to changes in gut-brain interactions, 
a condition related to anxiety [14]. Chronic noncommunicable 
diseases (NCDs), such as type 2 diabetes mellitus (DM2), 
hypertension, dyslipidemia and Atherosclerosis, are becoming 
increasingly relevant in global public health due to the disabilities 
they cause and early mortality. Excess of body fat plays a central 
role in the origin and maintenance of these diseases, and the 
increase in obesity in Brazil and other countries is alarming [46]. 
The participation of intestinal bacteria in the etiopathogenetic of 
these and other NCDs is arousing attention due to the possibility 
of being a potential target for intervention) [47-51]. There are 
expected around 15.4 million deaths worldwide due to DNTs 
[52]. Data from the National Health and Nutrition Examination 
Survey (NHANES) indicate that the prevalence of hypertension 



Pimenta/Ton/Guerra/et al.

25 J Food Microbiol 2018 Volume 2 Special Issue 1

in adults over 20 years of age has been estimated at 34.0% from 
2011 to 2014. This contrasts with the 67.2% among those with 
over 60 years of age [53]. Increasing evidence suggests that 
treatment-resistant hypertension is accompanied by a low-grade 
chronic inflammatory profile that facilitates damage to target 
organs maintaining the hypertensive state, suggesting a close 
connection between the sympathetic nervous system (SNS) and 
the immune system [54]. Environmental factors are perceived 
by the central nervous system (CNS) through the peripheral 
nervous system. The afferent is processed by the CNS that 
organizes the results into efferent behavioral responses, among 
others [55]. In this way, the autonomic nervous system (ANS) 
involuntarily regulates homeostasis. The two branches of 
SNA, SNS and the parasympathetic nervous system (SNP) 
cooperate to regulate organs in an antagonistic and synergistic 
manner) [56]. An important aspect of stress response, involves 
the hypothalamic-pituitary-adrenal axis (HPA) and various 
hormones that provide appropriate reactions to perceived 
threats [57]. Chronic stress in a sustained manner continuously 
activates the HPA axis, resulting in the continuous release of 
glucocorticoid hormone, cortisol (human) or corticosterone 
(rodent) and renin-angiotensin-aldosterone system (RAAS) 
[58].

The gut-brain axis involves bidirectional communication 
between the intestinal microbiota, the enteric nervous system 
and the SNC [55,59]. CNS responses can be activated by 
circumventricular organs (CVOs). During systemic inflammation 
the circumventricular organs (CVOs) can receive hematogenic 
information from the intestine, and activate the CNS), as it has 
been demonstrated in some intestine disorders [60,61]. CVOs 
are specialized structures that lack the blood-brain barrier 
(BBB), allowing direct communication between the cerebral 
parenchyma and peripheral fluids. As a result, these highly 
vascular CVOs can identify hormonal changes and cytokines in 
the circulation [62,63]. In addition, the vagal afferent pathway 
also mediates immune system signals to the CNS. One of the 
ways in which the CNS communicates with the immune system 
through the autonomic nervous system (ANS). Sympathetic 
nerves are present in the primary lymphatic organs (bone 
marrow and thymus) and secondary lymphatic organs (spleen, 
lymph nodes, mucosa-associated lymphoid tissue- MALT). 
Norepinephrine released from the sympathetic terminals of 
postganglionic neurons, bind to adrenergic receptors expressed 
in adaptive immune cells. Adaptive immune cell cells respond to 
NHS signals predominantly via the β2 adrenergic receptor, and 
the stimulation of β2 receptors in these immune cells modulates 
several aspects [64]. In the bone marrow, hematopoietic stem 
cells from the bone marrow (HSCs) receive direct afferent 
NHS through adrenergic receptors on the cell surface. This 
sympathetic physiological response to immune system benefits 
the mobilization of hematopoietic and progenitor stem cells 
(HSPC), in anticipation of possible infections and lesions [65]. 
In the secondary lymphatic organs, the sympathetic nerves 
accompany the local vascularization pathway and the connective 
tissue, forming neuro-effector junctions with the immune cells 
in the parenchyma. The intestinal lymphoid tissue (GALT) is 
also innervated by the sympathetic nerves that extend from the 
vascular beds in the intestines) [66]. Interestingly, the sympathetic 
nerve impulse prevents innervation of the germinal center where 

differentiation and maturation of B cells occurs, although it is 
known that B cells can be modulated by substances released 
from sympathetic terminals [67,68]. Interestingly, the effects of 
adrenergic signaling on cells of the immune system occur in 
pro-inflammatory and anti-inflammatory responses), depending 
on the level of activation of specific immune cells and the stage 
of disease [64]. The parasympathetic system also participates 
in the regulation of immune system Electrical stimulation 
experiments of the vagus nerve demonstrated attenuation of 
the inflammatory systemic activity to the endotoxin, reducing 
the pro-inflammatory responses to TNF, but not to the anti-
inflammatory IL-10 [69]. In subsequent research, it has been 
shown that alpha-7 nicotinic acetylcholine (α7nAChR) receptors 
present on macrophages are regulators of the anti-inflammatory 
effects resulting from vagus nerve stimulation [70]. Therefore, 
temporary activation of the vagus nerve leads to the release 
of anti-inflammatory acetylcholine that binds α7nAChR + 
macrophage and suppresses the production of pro-inflammatory 
cytokines [71]. However, chronic inflammation, as observed 
in hypertension, is associated with attenuation of the afferent 
vagal flow and efferent response [72]. From this, it is tempting 
to propose that afferent vagal signals from the gut can alter the 
profiles of immune cells by modulating efferent cholinergic 
tonus, reducing the inflammatory response of the mucosa and 
maintaining intestinal homeostasis [61].

Moreover, until recently, the fields of neuroscience and 
microbiology were rarely studied together. (However, progress 
in the field of intestinal microbiota and its influence on health 
and disease, in addition to the relationship with obesity and 
inflammatory bowel diseases, sparked interest in the possibility 
of this commensal community affecting physiology. Increasing 
evidence has shown that the intestinal microbiota also plays a 
role in CNS function through metabolic, neuroendocrine and 
immune functions [73].

Interactions between the Gut-Microbiota Axis and 
Behavior
The link between gut functions on the one hand and emotional 
and cognitive processes on the other hand is provided by bi-
directional afferent and efferent neural projection pathways, 
neuroendocrine signals, immunological activation and gut-
brain signals, altered gut permeability, and modulation of 
sensorimotor reflexes [73,74]. Gut microbiota emerged as a 
critical component potentially affecting all immuno-neuro-
endocrine pathways [75,76]. For example, even short-term 
exposure to stress may impact the microbiota community profile 
by altering the relative size of the major phyla, modifying the 
microbiota [77]. This behavior is similar to anxiety and the 
adjustment point for the activation of the stress neuroendocrine 
hypothalamic-pituitary-adrenal (HPA) axis [76,78-81]. 

Attention Deficit/Hyperactivity Disorder (ADHD) is a 
neurodevelopmental disorder that begins in childhood, 
characterized by a pattern of persistent inattention and 
hyperactive-impulsive behavior. The disorder is associated 
with deterioration of social, academic, and occupational 
behavior [82]. The worldwide prevalence of ADHD is 7.2% 
[83]. Several environmental risk factors for ADHD are related, 
such as tobacco use during pregnancy, low birth weight, 
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prematurity, among others, such as adoption. However, studies 
with families, twins and adopted children find the influence 
of a strong genetic component, with an average of 76% [84]. 
Despite all the efforts to pinpoint risk factors, the genetic 
variants identified so far only explain a small proportion (<10%) 
of the estimated inheritance of the disorder [84-87]. With these 
data, investigating the association of epigenetic factors became 
mandatory. Among the possible mechanisms of gut microbiota 
involved in the effects on the brain highlighted in ADHD are 
(1) change in gut permeability: increased permeability between 
cells of the intestinal epithelium would allow bacterial products, 
cytokines and chemokines to enter the circulation and be able to 
cross the blood-brain barrier. This could contribute to systemic 
inflammation and, consequently, neuroinflammation, causing 
in turn, effects on behavior; (2) synthesis of neuropeptides 
involved in the disorder (dopamine, noradrenaline, serotonin) 
and their precursors (phenylalanine, tyrosine, tryptophan), 
which are analogous in structure to the host’s nervous system. 
These precursors are produced by components of the microbiota 
and can be absorbed through the gut epithelium, enter the 
circulation and also cross the blood-brain barrier; (3) higher 
synthesis of harmful compounds (ammonia, phenols, indoles, 
sulfur and amines); (4) activation/deactivation of the autonomic 
nervous system, which connects directly to the nucleus of the 
solitary tract ON/OFF of the via autonomic system, nucleus of 
the solitary tract; (5) modulation of brain-derived neurotrophic 
factor (BDNF) and microRNA, which influence the genetic 
expression of the hippocampus [44,88-91]. Therefore, changes 
in the composition of the intestinal microbiota or increase in the 
number of pathogenic bacteria can alter the axis of the gut-brain 
and increase the risk of neurodevelopmental disorders [92].

Different studies have found alterations in microbial species 
in patients with mental disorders, such as autism and ADHD. 
A recent study by Aarts et al. found that the microbiota was 
different between patients with ADHD and healthy individuals, 
with increased function of the bacterial gene that encodes the 
enzyme cyclohexadienyl dehydratase, involved in the synthesis 
of phenylalanine, a precursor of dopamine [93].

Currently, there is great interest in modulating or balancing gut 
microbiota to treat ADHD [94]. Scientific evidence indicates 
that diet and dietary supplementation by administration of 
probiotics, prebiotics and other nutrients may be an alternative 
or adjunctive treatment to improve ADHD, mainly due to the 
microbiota responding rapidly to dietary change, suggesting 
possibilities for dietary interventions [94-96]. According to 
a meta-analysis, 30% of children with ADHD have excellent 
response to a diet that eliminates food allergens, with a reduction 
of more than 40% of symptoms [97]. Studies that have found 
changes in the permeability of the gut of patients with other 
neuropsychiatric disorders, such as autism, corroborate the 
correlation between this aspect and the disorder [98,99].

Microbiota and Short-chain Fatty Acids (SCFAs)
Short chain fatty acids (AGCCs) are formed from the process 
of anaerobic fermentation of complex carbohydrates by the 
intestinal microbiota and bring benefits to the host [37,100,101]. 
Acetic, butyric and propionic acids are the main ones, and of 
these, butyrate is the most studied. After their production in the 

intestinal lumen, they are released into the circulation and are 
in the brain and reach the brain [102-104]. We conclude that 
both the presence and the absence of SCFAs in the circulation 
can affect the CNS positively or negatively [105,106]. SCFAs 
bind primarily to G protein-coupled receptors) (GPCRs) and 
olfactory receptors (ORs) in mice (homology with ORs in 
rats) that trigger intracellular signaling [41,43,78]. These 
receptors are expressed extensively in organs/tissues, including 
sympathetic ganglia, epithelial cells, juxtaglomerular apparatus, 
endothelial cells and smooth muscle cells [107-109]. Among 
the major SCFAs, butyrate is the most widely studied. The 
butyrate exhibits effects on the intestine-brain axis on the SI, 
metabolic regulation and direct effect on the nervous system. 
It also participates in the recruitment of circulating leukocytes 
to inflamed sites, suppression of proinflammatory cytokines 
and modulation of production and release of chemokines in 
addition to the expression of adhesion molecules in neutrophils) 
[110,111]. Butyrate supplementation in the potable water of 
rodents improved expression of the Foxp3 gene and induced 
the production of regulatory T cells in vivo, suppressing 
inflammation) [112]. The anti-inflammatory properties of 
butyrate also have epigenetic implications because it strongly 
inhibits histone deacetylase (HDAC) and contributes to 
hyperacetylation and histone transcription. The direct result of 
this hyperacetylation is bi-directional changes in gene expression 
[11,113]. Since this is a reversible modification, different 
than genetic defects, it highlights the potential of butyrate in 
new therapies [114,115]. In addition, the inhibition of HDAC 
exhibits anti-inflammatory effects, suppressing the activation of 
nuclear factor κB (NFκB), important in inflammatory signaling 
pathways [116]. Due to this range of beneficial effects on immune 
system, butyrate is being studied for autoimmune diseases such 
as inflammatory bowel diseases (IBD) [117]. The addition of 
5% butyrate in the diet showed a satisfactory improvement in 
insulin resistance and reduced fat), suggesting metabolic effects 
[39]. The beneficial metabolic effects of butyrate appear to be 
by direct action on its mitochondrial action. At the periphery, 
butyrate increased respiration and mitochondrial energy) [39]. 
In addition, ex vivo incubation of butyrate in germ-free mouse 
(GF) colonocytes rescued mitochondrial respiratory deficits and 
inhibited energy-induced autophagy deprivation [118]. In the 
CNS, the role of astrocytes in the communication of neuroglia is 
enhanced by their ability to donate mitochondrial fragments to 
neurons, favoring the recovery of neurons from oxidative stress 
induced by ischemia [119]. In addition, peripheral butyrate can 
be detected directly by sensitivity to afferent receptors) [120]. 
These afferent nerve responses are abolished in rats submitted 
to vagotomy, indicating the involvement of vagal afferents in 
the response to butyrate. Thus, the potential impact of butyrate 
on epigenetics in immunoregulatory mechanisms deserves 
attention, since these mechanisms can lead to specific and 
effective therapeutic strategies in the prevention and treatment 
of various diseases) [106,121].

Myoenteric plexus

The enteric nervous system (ENS) is a complex and extensive 
neuron network that extends from the esophagus to the anal 
sphincter, composed of ganglia, interconnected fibers and  
neuron fibers that affect tissue effectors including smooth 
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muscle, epithelial lining, endocrine cells, gastroenteropancreatic 
and blood vessels) [122]. All aspects of the gastrointestinal tract 
are controlled by the ENS, including: motility patterns, gastric 
secretion, nutrient management, fluid transport through the 
epithelium, blood flow , participation in endocrine modulation of 
the intestine and interaction with the immune system [123,124]. 
A unique property of the ENS in relation to any other section of the 
peripheral nervous system is that the enteric ganglia can maintain 
their correct functioning even in the absence of entry into the 
central nervous system. For example, the intestine may increase 
peristaltic reflex or generate migratory myo-electric complex, 
regardless of extrinsic innervation [123]. The ENS, however, is 
not autonomous regarding neuron control of the gastrointestinal 
tract, because it depends on a system of interactions between 
local reflexes, reflexes that go through sympathetic ganglia 
and reflexes that go to the gut and back to the CNS via vagal, 
splanchnic and pelvic nerves [122,125]. The ENS is composed 
of a high number of neurons (200 to 600 million in humans), 
the same number of neuron Found in the human spinal cord, 
which originate the three main nervous plexuses: the subserosal, 
the myoenteric (Auerbach's, located between the two smooth 
muscle layers) and submucosal (Meissner is in the submucosal 
layer). The latter is absent from the esophagus to the stomach 
[122,126]. We have studied approximately 20 different types of 
neurons, classified according to their morphology, physiology, 
neurochemical coding, target functions and projections. From 
a functional point of view, three main classes of neurons were 
identified: intrinsic primary afferent neurons, interneurons, and 
inhibitory motor neurons [126].

Several studies in recent years have demonstrated that enteric 
glial cells, in analogy with astrocyte function, do not only 
contribute to create a protective local microenvironment, but 
also play a functional role in the transfer of enteric information, 
responding to the variety of neuron connections [127,128]. 
A distinctive feature of the ENS is that the enteric neurons 
communicate with different cell types, which constitute the 
enteric microenvironment [129]. Enteral neurons can exchange 
information with enteric glial cells, interstitial cells of Cajal, 
which are considered intestinal pacemaker cells, smooth 
muscle cells, immune system cells contributing in neuroimune 
modulation [129].

Gut-Microbiota Axis and the Vagus Nerve
Approximately 90% of the fibers of the vagus nerve are afferent, 
participating taking sensory information from the periphery to 
the CNS [130]. The main site of the spinal cord that receives the 
afferent information of visceral organs, including the intestine 
is the nucleus of the solitary tract (NTS). The vagal effusion in 
the medulla is made mainly by the dorsal nucleus of the vagus 
nerve. 

Vagal afferent

The vagal afferent fibers are present inside the lamina propria 
and in the crypts of the gastrointestinal tract, and from there they 
transmit sensory information afferent to the CNS. In this way, 
the chemical and mechanical receptors, present in the vagal 
afferents, perceive changes in intestinal homeostasis [131,132]. 
This information is retransmitted and informs the CNS about 

mechanical distention of the gut, chemical/pH changes and 
inflammatory state of the tissue. In view of the latter, it has been 
demonstrated that administration of lipopolysaccharide (LPS) 
or IL-1β may lead to activation of the intestinal vagal afferents 
[133,134]. This mechanism is dominant when inflammatory 
bowel cytokines are undetectable in circulation by CVOs during 
low-grade inflammation. In addition, the presence of the Toll-
like receptor 4 (TLR4) in the nodal ganglia also plays a role 
in vagal afferent detection of systemic immune molecules, in 
addition to localized intestinal inflammation [135]. (NTS plays 
an essential role in the reception of afferent vagal information 
Glutamate is the main neurotransmitter that carries information 
from the vagal afferents into the NTS. The glutamatergic and 
GABAergic (gamma-aminobutyric acid releasing) neurons, 
secondary to the NTS level, detect the afferent glutamatergic 
entry, forming a narrow network that processes these incoming 
signals and subsequently projects them to other brain regions, 
as well as to cholinergic efferents. This signal relay eventually 
results in excitatory or inhibitory effects in the gut, i.e. neurons 
are modulating peripheral responses), (as well as in the 
cardiovascular system and immune system [135,136]. 

Vagal efferent

Because this cross-talk exists between SNE, primarily via vagal 
and CNS afferent, the latter monitors the homeostatic state of 
the GI tract and regulates its contractile properties such as acid 
secretion through the vagus-vagal reflex. In contrast, intestinal 
contraction/distension, local blood flow, and nutrient absorption 
are regulated locally within the intestine. The removal of the 
vagovagal reflex, therefore, has minor impacts on general gut 
function [122].

Gut-Microbiota-Brain Axis and Neuroendocrine 
System
Angiotensin II (Ang II) is a vasoactive peptide RAS that can 
raise blood pressure direct vasoconstriction, activation of SNS, 
activation of immune system and induction of aldosterone 
biosynthesis. Although the SRA presents two distinct parts 
(peripheral and central), they are interconnected and may 
contribute to the elevation of BP, via the circumventricular 
organs that connect the peripheral and central effects of 
angiotensin II. The presence of dysbiosis and intestinal 
inflammation were found in Ang II induced hypertension, 
characterized by dysfunctional ANS and central inflammation, 
but it is unclear whether these changes are cause or consequence 
of hypertension, and whether there is a prominent role of Ang 
II in modulation of the microbiota. Recently, it has been shown 
that Ang II hypertension and vascular dysfunction are decreased 
in GF mice [7,137,138] suggesting that the intestinal microbiota 
contributes to an increase in Ang II-induced BP [51].

5-hydroxytryptamine, 5-HT (Serotonin)

It is a monoaminated neurotransmitter derived from tryptophan, 
found mainly in the gastrointestinal tract, blood platelets and 
CNS [139]. (More than 90% of 5-HT is synthesized in the gut, 
diffuses into the circulation and is transported by platelets, or 
binds to its receptors that are widely distributed in neurons, 
enterocytes, and immune cells) [139]. 
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Although it is generally accepted that serotonin cannot 
translocate from the peripheral circulation to the brain because 
it does not cross the blood-cerebrospinal barrier, it has been 
suggested that changes in the intestinal microbiota affect 5-HT 
levels in the hippocampus and that endothelial cells in the brain 
actively express Ht transporters) [140,141]. In addition, the 
presence of 5-HT receptors in the surrounding organs (CVOs) 
may also mediate the connection between the intestine and the 
brain [142,143]. Notably, has been associated with hypertension 
due to the discovery that anorectic agents, indirect serotonin 
receptor agonists, can cause pulmonary arterial hypertension) 
[144]. Potential mechanisms contributing to pulmonary arterial 
hypertension include increased expression of 5-HT receptors, 
reduction in serotonin transporters (SERT) and generation of 
reactive oxygen species (ROS) in the lung [145]. (The role 
of serotonin in blood pressure control has been reviewed in 
other studies [140]. the unbalanced production of serotonin in 
addition to being related to anxiety and depression are also with 
increased BP) [146]. Psychosocial stressors are associated with 
anxiety disorders that induce the activation of ANS and the 
HPA axis, which consequently predisposes individuals to the 
development of hypertension [147].

Glutamate, Dopamine and GABA
GABA is a pan-inhibitory neurotransmitter in the CNS of 
mammals. GABAergic neurons are present and involved in 
regulating the excitation of various cardiorregulatory brain 
regions and modulating vagal signals in NTS. High GABA 
signaling in NTS has been associated with hypertension and 
diabetes [148,149]. GABA has cardioregulatory action in the 
paraventricular nucleus of the hypothalamus (PVN), where it 
supposedly contributes to sympathetic control. For example, 
microinjection of a GABA antagonist into PVN produced a 
significant, dose-dependent increase in renal sympathetic nerve 
activity, suggesting inhibitory modulation in the presympathetic 
neurons of the PVN [150]. Identification of glutamate as 
a neurotransmitter in the CNS dates to the mid-1980s. 
Since then, several evidence demonstrating that a complex 
"glutamatergic neurotransmitter mechanism" is responsible 
for regulating the amino acid synthesis, release and reuptake 
into neurons and glial cells [151]. Glutamate is an important 
excitatory neurotransmitter in the CNS, it does not exceed 
the hematoliquic barrier and is produced by neurons through 
the transamination of α acetoglutarate, originated from the 
glycolysis, and the deamination of the glutamine amino acid 
(obtained from the diet) by the phosphate activated glutaminase 
[152,153]. Glutamate, via activation of vagal, splanchnic or 
pelvic afferents, whose cellular bodies are contained within the 
vagus nodose ganglion (VNG) and dorsal root ganglion (DRG), 
participate in the transport of sensory information to areas of 
the brain involved in the regulation of different gut functions. 
Activation of glutamate receptors can regulate both excitation 
and inhibition of the gastrointestinal tract via the efferent 
pathways of the dorsal vagus nucleus (DNV) [122,154,155]. 
Glutamate is an important excitatory neurotransmitter in the 
CNS. Activation of vagal afferents results in the release of 
glutamate in the NTS and alters the membrane potentials of the 
second order NTS neurons by binding with amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) or N-Methyl 

-D-aspartate (NMDA), which may contribute to maintaining 
the membrane potential at rest or regulate the convergence of 
excitatory stimuli, respectively [156]. Injection of glutamate 
into NTS causes dose-dependent hypotension [157]. On the 
other hand, microinjection of glutamate into PVN produced 
dose-dependent increase in BP; effects that can be blocked by 
the NMDA receptor antagonist) [150].

Both GABA and glutamate have been shown to be abundant 
in the gut [158,159], and the gastrointestinal tract hosts a large 
amount of gram-positive anaerobic bacteria facultative bacteria 
Lactobacillus and Bifidobacterium, capable of metabolizing 
glutamate and producing GABA [160]. Several studies support 
two basic pathways by which GABA derived from the gut 
can be detected and used by the CNS: (1) GI derived from GI 
may be able to diffuse into the circulation and cross the BBB 
[161,162]; and (2) GABA derived from GI can be detected 
by GABA receptors within the enteric nervous system, which 
communicate directly with the vagal afferents [163,164].

However, direct evidence is still lacking to reach a robust 
conclusion. Dopamine (D) has a neuronal and non-neuronal 
production and almost half of the dopamine produced in the body 
comes from the gastrointestinal tract [165]. Locally produced 
dopamine (i.e., proximal renal tubule, jejunum, Bacillus 
cereaus, B. mycoides, B. subtillis) is independent of innervation 
and has shown significant effects on the regulation of BP via 
renal receptors similar to D1 that modulate NaCl excretion 
[166,167]. Long-term treatment of the D1 receptor antagonist 
increased BP, and involvement of the receptor similar to renal 
D1 was associated with hypertension [168]. 

Microbiota Immune System
The brain has the means to generate a local immune response, 
and this defense mechanism mainly involves glial cells. It has 
been shown that the excessive or sustained activation of central 
immunity by systemic stimuli results in an imbalance, and even 
damage, in neurons that can lead to neuroinflammation and 
neurodegeneration [169]. Microglia and astroglia, constitute 
two large populations of glial cells, where microglia corresponds 
to 5-20% and astróglia 20-40% of the total population of the 
glial CNS. Microglia reacts to environmental antigens, limits 
apoptotic cell debris and maintains systemic homeostasis 
immune, while astroglia beyond the structural and supporting 
role, also provide nutrients to the neurons) [170]. Astroglia, with 
thousands of dendrites and synapses, dynamically communicates 
with neighboring neurons and other glial cells, where the minor 
changes perceived in the environment may result in the release 
of cytokines / hormones in glia. Severe chronic threatening of the 
brain environment causes microglia and astroglia to perpetuate 
increased CNS inflammation that has a profound impact on 
neuronal activity [170,171]. The association between intestinal 
flora composition and cognitive processes, such as learning 
and memory, besides contributing to the initial development of 
normal social and cognitive behaviors, aid the metabolism by 
breaking down complex polysaccharides in the diet, modulates 
gut motility, homeostasis of the GI barrier, fat distribution, 
controls of colonization of pathogens in the gut, modulate host 
energy by changes in mitochondrial metabolism and function 
[172-177]. T-lymphocytes differentiation and interleukin-6 (IL-
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6) levels increase in patients with advanced clinical status and 
may contribute to disease impairment through a compromised 
adaptive immune response due to accelerated aging of the 
immune system [178].

Conclusions
With all the scientific evidence known till day, from a continuous 
and intense cross talk between the intestinal microbiota and the 
CNS, this virtual organ that we housed  in our intestine, with 
genetic material of 150 times that of ours, aroused great scientific 
questions, easily avid by the intense scientific production on this 
subject worldwide. Intestinal dysbiosis was related as one of 
the causative factors of non-transmissible chronic inflammatory 
diseases and among them neuro-degenerative diseases. Much 
evidence has shown that the administration of probiotics could 
mitigate many manifestations of these non-logical conditions. 
However, the great difficulty still faced by researchers is to 
optimize the applicability of these supplements and so further 
research such as large clinical trials in specific neurological and 
psychiatric disorders are necessary for the implementation of 
these supplements to be made safely and effectively in clinical 
practice.
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