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Abstract

We consider a quantum particle as a wave packet, and find that the group velocities in the
coordinate and momentum spaces are in agreement with the Hamilton equations only when
the Lagrangian is considered in the time dependent phases, instead of the Hamiltonian in
the conventional forms of these waves as solutions of the Schrodinger equation. We define a
relativistic quantum principle, and derive a wave equation for a relativistic quantum particle,
the relativistic kinematics and dynamics of the particle waves, the Maxwell equations and the
Lorentz force of a field interacting with the particle waves, the relativistic transform of such a
field, and the spin as a characteristic of the particle waves. We consider a quantum particle as a
distribution of conservative matter propagating according to the General Theory of Relativity.
We obtain the dynamics of this matter in a gravitational field, the propagation in plane waves
perpendicular to geodesic tracks, and equations of conservation.

Keywords: Quantum particle, Wave packet, Group velocity, Lagrangian, Hamiltonian, Maxwell equations,

Spin, metric tensor, Covariant derivation.

Introduction

We perceive the physical world as a collection of objects, in
a three-dimensional space of coordinates defined by a position
vector ¥ = x1, + 1, +z1,, and in time, defined by a scalar
t [1-5]. For a matter object we define an inertial property called

mass, M, and a dynagic quantity as the product of the mass
— r - -
with the velocity, V = E’ called momentum, P = My we

also define a conservative quantity, called energy,

E = Ho(7,p)=T(p)+U(7) (1.1)

as a sum of the kinetic energy 7(p), which depends on
momentum, and the potential energy {/(), which depends on
the coordinates [6-8]. From the conservation condition:

dE _0Hy d . 0Hyd ..

dr a’ op a’

(1.2)

= P+
de or dt

we obtain the dynamic equations called Hamilton equations,

d 0y _ 0 1

—r=—==—=T(p
dt d p (1.3)
%j’):—a; :—%U(?) - Force.

while the energy function of coordinates and momenta,
1—'72

Hy(#,p)=—+UF

o) 0 )
is called Hamiltonian. However, this classical description
tells us nothing about the structure of the physical world. Only
Quantum Mechanics tells us something about the structure of
this world. Namely, that this world is composed of species of
identical quantum particles. On one hand, experimentally, it

(1.4)
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has been found that these particles are of a wavy nature. On
the other hand, one could find that the simplest way to define a
quantum particle is by a wave packet, with momenta conjugated
to coordinates and energy conjugated to time, with a single
quantum constant # [9-11].

~ 1 ~ (pr-E)
Y, (7t)=——5|9,( p.t)e" d’p
)= o)
= 1 Lo\ (BB o
(po(p,t)=7mj.\vﬁ(r,t)e W 4’7
(2mn) (1.5)
In this case, one can define a momentum operator
. .. 0
p=-h—
or (1.6)
and a Hamiltonian operator,
R
Hy=ih—=———"—+U(F)=E
0= = o (7) (1.7)

With these operators one obtains eigenvalue equations, for
momentum,

., 0 - . .
—lha—l_;l//E(l",t)=pl//E(l",t) (1.8)
and for energy, as a Schrodinger equation:
R B,
"o, arTZJFU(’”) vie(F.t)=Eyg(F.1) .

However, when the group velocities are calculated for the
wave packets (1.5), which with (1.1) are of the form
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- {r[()(F)]t}_
l//E(r7t) 3/2 I¢O pa ’ ! d3

(1.10)

-[r (p)+U(F)]t}d3

¢0(ﬁ’t) 3/2 J-(//E r t)e h pr

(27rh

we obtain an erroneous equation, contradictory to the
corresponding Hamilton equation (1.3):

OH -
4z My _ 0 r5) -0k
dt op Op
i oH, o (1.11)
Ep =F=§U(r) - Erroneous equation

- a minus sign is missing [12-14]. We get back the minus
sign only if instead the Hamiltonian H (7, 5)=T7(p)+U(F) we
consider the Lagrangian
)

Lyl7.7)= pF — Hy(p.7) = T(p) - U(F) = sz _uF)  (112)
In his case, the wave packets (1.10) take a form
volF.)= o 3/2 [ah(50) '{pr e g
ho(p.1)= 3/2 foseap IO (113

with group velocities in agreement with the Hamilton
equations (1.3):

d. 0 ,.,,.\ OH
S =7
P P (1.14)
L p=-culr)=- 0
dt or or

However, this description is still unrealistic, having an infinite
spectrum of waves, as a function of the wave velocity ¥ . A finite
spectrum is obtained when the relativistic Lagrangian Ly (r ),

“ C

is considered in the time dependent phase of a particle wave:

(1.15)

- [M}“r-Ln(?,#)z] 3 e
v, (Fot)= Wf(po( ) " Md%F
= 1 3/2 J.\V(F’t)eié[M#iLo(Fj)t]d3’7

(Znh)

From (1.15), we notice that the invariance of the space-
time interval of the Theory of Relativity is equivalent to the
invariance of the time dependent phase variation of a quantum
particle, and define a Relativistic Quantum Principle: The scalar
tim-dependent phase variation of a quantum particle wave is an
invariant for an arbitrary change of coordinates. On this basis,
in section 2 we obtain the relativistic transform of the space-
time coordinates, and the relativistic dynamics of the particle

(1.16)
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waves. In section 3, we consider a quantum particle in a field
described by a scalar potential conjugated to time, and a vector
potential conjugated to coordinates. We obtain the Lagrange
equation as the velocity of the particle waves, the Lorentz
force, and the Maxwell equations. In section 4, based on the
Relativistic Quantum Principle, we obtain the dynamics of a
quantum particle in electromagnetic field. In section 5, from the
invariance of the time dependent phase of a quantum particle
at an arbitrary change of coordinates, we obtain the relativistic
transform of the electromagnetic field. In section 6, we obtain a
relativistic equation for the quantum particle waves, show that
the solution of the Schrédinger equation is only the amplitude
of the wave function of a quantum particle, which also includes
arapidly varying factor depending on the particle rest mass, and
derive the spin of a quantum particle wave. In section 7, we
consider the inversion of two particles as a double rotation of
these particles, and obtain the spin-statistic relation. In section
8, we consider a coordinate deformation according to the Theory
of General Relativity, and obtain the dynamics of the particle
waves in gravitational field. In section 9, we consider the particle
waves as a distribution of matter described by a density and a
velocity field, and find that these waves are perpendicular to the
geodesic tracks. We derive an invariant for the matter density
of a quantum particle, and an equation of conservation of this
matter. Section 10 is for conclusions.

Relativistic Kinematics and Dynamics

Arealistic particle has a finite spectrum as a function of the wave
propagation velocity. A finite spectrum is obtained for a relativistic
Lagrangian. According to (1.15), the invariance of the scalar time
dependent phase variation LO(?) dt of a quantum particle wave
function is equivalent to the invariance of the space-time interval
ds. For such a particle, we obtain the momentum,

e oLy _ MF iy
or 72
I-=
¢ 2.1
and the mass,
M=
B (2.2)
1-—5
Cc

as functions of the particle velocity }7 and the cut-off
velocity c¢. The invariance of the space-time interval means that
a change of coordinates is in fact a rotation of the space-time
coordinates (Figure 1).

By a well-known calculation, the relativistic transform of
the coordinate intervals is obtained for the quantum particle
waves. Thus, from the coordinate transform,

dx® =dx" cos§+dx" sind
dx' = dx" cosd—dx" sind
dx® =dx”
dx® =dx®

with the expressions of the rotation angle trigonometric
functions,

2.3)
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Figure 1. The rotation of the space—time system of coordinates
for a velocity V' of the system ( x% =ct',x ) over the system

(x —ctx)

tan & —i5x B —iX
¢= 5x0 cot C
cosQ = !
1 v
T2
c
iV
R 2.4
sin c @4

for the coordinates of a quantum particle wave, we obtain
the transform:

”
di'+ dx’ _dx'+Vat'
2 2
/ v
¢’ c 2.5)
=dy’, =dz/,

which, in this case does not refer to the coordinates of some
classical particle as in the conventional Theory of Relativity, but
to the coordinates of the quantum particle waves.

Electromagnetic Field

When a particle with a charge e is placed in a field of a vector
potential A(7,) conjugated to the coordinates, and a scalar
potential U(#) conjugated to time, for the two wave packets of
this particle

3.1
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a time dependent phase variation arises, with terms
proportional to the coordinate variations, and the time variation,

L(r r t)dtsz c’

o |-t + A(7 t )dF —eU(7 )dt

(3.2)

In this case, we get a canonical momentum,

p=%L(;j,;)= Moj +ed(F,1)= p+edlF,1) (3.3)

with a mechanical component depending on the particle
mass and velocity, and an electromagnetic component as the
product of the particle charge with the vector potential. For a
quantum particle in a field we consider again the relativistic
quantum principle: The time dependent phase variation of a
quantum particle is the same in any system of coordinates.

We are in agreement with the Aharonov-Bohm effect [15]:

the time-dependent phase of a quantum particle l/l'(?, t)’
2 '

h 2 . 81//
-——Vy'-Vy' =ih——
2m v v ot

in a magnetic field includes a term proportional to the space
integral of the vector potential of this field:

\y(?,t)zeig(y)\y'(it)

jA )dr’

This effect has been experimentally put out into evidence
(Figure 2).

Besides this variation, we consider a time-dependent phase
variation with a term proportional to the scalar potential and
time, and the invariance of this phase. From equation (3.3), we
obtain the electric force:

(3.4)

4

Beam
recombined

Solenoid

Figure 2. Experimental evidence of the Aharonov-Bohm effect:
between the two electron beams, a phase difference arises due to

the vector potential 4 [4].
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while from a particle wave velocity in the momentum space
we obtain the Lagrange equation:

d- 0 : 0 [~ : 0
—P=—1LI|F,F,t)J=e—|AlF,tJf |-e—=Ul(rF
a5 ) eaf[ (0¥ 5 U0) (3.5)
With the vector formula:
?x{qu(?,t)} =§[;A(f,t)]_[;€jA<f,t)
6r 87’ ai" (36)
we obtain the Lorentz force:
ﬁe :eE(?,t)+e;7xl§(i7,t) 3.7)
with the electric field,
B0 =—2u)-L A )
or ot (3.8)
and the magnetic field,
- o -
B(Fr,t)=—xAlFr,t
(F.) = —x A1) 59)

Taking into account that the curl of the gradient is null,
from (3.8) with (3.9) we obtain the Faraday-Maxwell law of the
electromagnetic induction:

0 =/ 0 =/
—xE(F,t)=——=B(F,t)

or ot (3.10)
Taking into account that the divergence of the curl is null,

from (3.9) we obtain the Gauss-Maxwell law for the magnetic
induction flow:

0 (-
- B(V , t) =0
or (3.11)
With the Gauge condition

9 AF.0)=0
or (3.12)

we obtain the Gauss-Maxwell law for the electric field flow:

2

2 5= su) =20
or or €0 (3.13)

with the Laplacian of the scalar potential as source of this
divergence, considered as a ratio of the charge density P\7
and the dimensional constant &; called electric permittivity.
Considering a current density under the action of the electric
field,

JF. )= p(F.0)f =cE(F,t) = FxE(F,0)=0 (3.14)
with the vector formula
0 o =/ 2 0 =/ 20 \z/e
6—}7>< r xli)(r,t) —r{gE(r,t)}f(rng(r,t)
200 2 Vg7,
€0 or (3.15)
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we obtain the time derivative of the electric field of the form:

d = </ 0 7/ 3.16
SO—E(r,t)z](r,t)+£0—E(r,t) (3.16)

dr ot
For the relation (3.10) of the two vector fields, asserting
that a time variation of a magnetic field determines a curl of
the electric field, we consider a symmetric relation, namely that

a time variation of the electric field determines a curl of the
magnetic field:

SO%E(F,t):LixE’(F,t)

Ho OF (3.17)

From (3.16) and (3.17), the Ampére-Maxwell law of the
magnetic circuit is obtained. In this way we obtain the whole
system of Maxwell equations:

oF ot (3.18)

and the Lorentz force,

F’e = eE(F,t)+ eF X E(F,t)
(3.19)

This force acts on the particle wave functions (3.1), with the
time-dependent phase coefficient:

L(T’,?,t) = 7M0c2 /lfié + e;&(?,t)? —eU[T’)
as a function of the two potentials of the electromagnetic

field:
)22 u() -2 36
E(F,t)= aFU(}") 8tA(r’t)

(3.20)

=i 0 =/
=—x .

B(r,t) p= A(r,t) (3.21)

It is interesting that by the hypothetical relation (3.17), we
obtain a field propagating in waves with a velocity 1/./g,z »
in agreement with the electromagnetic theory. For the physical
consistency, this velocity takes the limit value of the velocity of
the quantum particle waves (Figure 3):

1

VE€oto

Otherwise, an electromagnetic field not interacting with a
quantum particle, or a quantum particle not interacting with any
electromagnetic field could exist, which is contradictory to our
basic hypothesis of the particle-field interaction.

€= (3.22)

20



Limit velocity ¢
= Light velocity

Figure 3. Wave packet of a quantum particle, with a limit velocity c
equal to the electromagnetic field velocity.

DynamicsofaQuantumParticlein Electromagnetic
Field

We consider the space-time interval,

,&2
ds=c /1—72dt:1/—dxl-2

4.1
and the phase variation (3.2),
ds = L(F.7.t)dt = —M,cds + eA(F,t)dF —eU (7 )dt 42)
as functions of the coordinate four-vector
(%) =(xy.2ict) (4.3)
and the field four-vector

4.4

(A,-):(Ax,Ay,Az,éUj

For the wave velocity in the space of the momentum (3.3),
from (3.1) we obtain a wave/group velocity of the form of the
Lagrange equation:

d 0 (. - 0 (- =

——.L(r,r,t)zTL(r,r,t)

dr or or (4.5)

which means that the time-dependent phase of a quantum
particle wave function is of the form of the action of the
Lagrangian (3.20),

S=[L(7.F.t)dt = [(~M,cds +eA,dx,) (4.6)
In agreement with the principle of the least action,
88 = I(Mocﬁadxi +eA,8dx, +eSA dx, ] =0 4.7)
S
for the velocity four-vector
u dxi
PR (4.8)
and the field four-tensor
O 04 4.9)
toox, ox,
we obtain the dynamic equation
u,
M c—=eF,u, (4.10)

2 ds
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or

d( dx dx,
— | M—L | = eP;‘k —
e\ dt dt

(4.11)
with the relativistic mass
M =M (4.12)
which depends on the relativistic coefficient
(4.13)
0 B -B -_E,
g c
B, 0 B, -1E
(Fi)= f
By —B, 0 ——E,
c
e, tE, 1E. 0
¢ ¢ ¢ (4.14)
we obtain the Lorentz force,
d/ - . -
—(MF)z eE+erxB
dt (4.15)

for the interaction of a particle wave with an electromagnetic
field.

Relativistic Transform of a Field Interacting with
a Quantum Particle

For a coordinate four-vector transform,

-1
x. =o.x, x'=a’ x.
1 g o] J Jt 1

5.1
with the transformation matrix,
Y 0 0 —iyK
c
0 1 0 0
(o, )=
7 0 0 1 0
%

in the least action equation (4.7), we obtain an invariant
including a mechanical term and an electromagnetic term:

oS :I —Mycdu;ox; + Fpupoxds [=0
| | —

mechanical electromagnetic

(5.3)

Since the mechanical term is invariant to any change of
coordinates,
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dudx, = a0, dudx; = oo, dudx; =8 ,du’dx; =du'dx] (5.4)
the electromagnetic term must be also an invariant,

’ ' ’
F,u,0x, = O(‘klula’ijsxj = ‘F}lulsxj (5.5)

or

o1 r__ r -1 -1 _
Fjudx’ = Fjou, u o, 8x, = Fjou, w0, 8x; =

Fuwdx  (5.6)

On this basis, we find the transform for a change of
coordinates of a field interacting with a quantum particle

F, = Fa 0 (.7
or
P;‘k = (x‘ija‘klP}; (58)
with the explicit form:
E + VB E fVB .
E" 2 2
I_L /I_L
C
V
B C
“ V (5.9)

Particle Wave Function and Spin

From the Lagrange equation obtained as the group velocity
(3.5) with the momentum expression (3.3),

dt” dtor ar : 6.1)

and the Hamiltonian definition

H(f’,?,t):f’?—L(?,?,t)

(6.2)
as a conservative function,
dH(P,,1)= a%H(P,F,t)dﬁ +QH(13, )G +6—Hdt
_dpi+podi- L - a—Ld"—a—Ldt H 4
= ar or ot ot
PdF e
I
0 (6.3)
we obtain the Hamilton equation
¥=—=H(P,7,t
(e
= 0 (5 -
P=——H\P,r,t
37 1P.71)
0 (5 - 0 (- =
—H(P,r,t): —— (r,r,t)
ot ot (6.4)

At the same time, with the definition expression (6.2), the
wave packets (3.1) take a form
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(6.5)

as solutions of a wave equation

L 0 0 =\ o
zha\y(r,t) = —1hr§\y(r,t) - H(P,r)w(r,t) (6.6)
which, compared to the Schrédinger equation includes a

term depending on the velocity.

On the other hand, from (3.1) we notice that, in a classical

approximation,
=2
L(7.7.t)=-M,c’ /1—2—2+6A(F,t)?—eU(F)
%) ) 6.7)
<M+ A (7 )i - eU ()

the Schrodinger wave function y g (? ,t), we usually use in
our studies, in fact is not the particle wave function, bat only an
amplitude of a wave function including a rapidly varying factor,

%[Mocz+2eU(F)]t

w(r.r)= Ve (7ot)

(6.8)
We consider an electromagnetic field with a constant scalar
potential for a stationary electric field, and a time-dependent
vector potential for a coherent radiation field. From equation
(6.2) with (3.3) and (3.20), we notice that although the vector
potential A(? s t) depends on time, the Hamiltonian does not:

H(ﬁ,?,t):ﬁ?—L(?,?,t)

=2 )
= Mor-Z +€Z‘(F,t)r;—[—M0¢:21 l—r—z+e;\(F,t)?—eU(F)
r ¢ —

-7
=

With this Hamiltonian we, obtain the total energy as a
function of the mechanical energy and the potential energy in
electric field:

H(ﬁ,?,t)z

] (6.9)

2

MLHU(?):E(?,?) (6.10)

With the mechanical energy as a function of the canonical
momentum (3.3),

22 222
M(’rfz = MO: + M2 = [Pci(Fo)f + M3
I-— 1-— 6.11
c? c? ( )
we obtain the canonical form of the Hamiltonian
(6.12)

H(P7.t) =\ Me +[ P—eA(7.t)] +eU(7)

According to Dirac’s well-known spin theory, we consider
22



the Schrodinger equation

.. O ~ -
lhEV/E(’”at)zHl//E(’”al)

(6.13)
with the Hamiltonian
H(p,7,t)=c\p> +Moc® +eU(7)=c
(o, p, + 0, p, + 0, p, +a,Mc)+eU(7)
(6.14)
which depends on Dirac’s spin operators
[i 0] [0 Ulj (O 62] [0 og)
ay = a = > Uy = > 03 =
0 -1 o 0 o, 0 oy 0 (6.15)
as functions of Pauli’s spin operators,
3 01 _ 0 —i 3 1 0
70 o) o) o - 6.16)
These operators satisfy the commutation relations:
{ot,.,otj}zotiotj +o,0, =28, (6.17)
{Gi,Gj}ZGiG]. +0,0, =29, (6.18)
With the notation
&:(051»052:053) (6.19)

the Schrodinger equation (6.13) with the Hamiltonian (6.14)

takes a form:
[c(ayMyc+6p)+eU(F) v, (F.t) = By, (7.t) (6.20)

with a wave function which can be written as a vector with
two components, or a vector with four components,

h

6.21

AN ©2h
E\w) | 4
4

We obtain the two-dimensional Schrodinger-Dirac equation,

H z(( ))JM”[ Wzg))]p}w( )(:; E;]Em))] (6.22)

with two coupled Schrédinger-Dirac equations for the two

components ¥/ (77 ) and ¥/» (’7 ),

[M0c2+eU(F)] (F)+

;.’
[—Moc2 +eU ?):| \|12(
where

o=\01,0,,0
( 1,02 3) (6.24)

By eliminating the coupling terms, the two Schrodinger-
Dirac equations take non-linear forms, which, in a non-
relativistic approximation, small velocity, small electric
potential, become linear:

23
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[E+Mc —eU(?)]{E—M“cZ —eU(F)} v, (7)=¢*(88) v, (7)

~2M,c?

E— My’ —eU(7 }M\v ", (F) (6.25)

=E, M,

In the non-relativistic approximation, we get Schrodinger-
Dirac equations

%—I—eU(?) v, (F)=Ev,(F)

%”U(?) v, (F)=Ev, () (6.26)

for the classical energy
E.=E—My*

The Hamiltonian of these equations includes a kinetic term
depending on the momentum and the Pauli spin operators,

(6.27)

(@) =(o1p +o2pr +o3ps ) = 2 +i6(pxp)  (6.28)
With the mechanical momentum in a magnetic field,
p=DP—edlF,t)=—-inV —edlF,¢) (6.29)

we obtain the vector product of equation (6.28) of the form
pxp=(-inV —ed)x(-inV —ed)=ine(Vx 4+ Ax V)= ienB
T

(Vx i+ AxV)p=Vx(dg)+ Ax (V)= (v x 4 (6.30)

Thus, in the kinetic term of the Hamiltonian, besides the
mechanical term, proportional to the square of the mechanical
momentum, we obtain a magnetic potential, proportional to the
magnetic field, as of a proper rotation, called spin:

2 =2
(@) =p
We obtain Schrodinger-Dirac equations with a Hamiltonian

including the kinetic energy, the electric potential energy, and a
potential energy in magnetic field, due to the particle spin:

m_mmu@)}% (7)=Ev,(7)
[2113; gsmeu(;)}%(;):a%(a

—eh&é 6.31)

0 (6.32)
with the spin magnetic moment
i = he 5
o=
2M, (6.33)
and the component
10y = he o
3= 3
2M, (6.34)

in the direction of the magnetic field. Taking into account the
commutation relation

[H, j3]=[H.1;+53]=0
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of the Hamiltonian

H = claypy + oy py + a3 ps + oy M c) (6.36)
with the total angular momentum, which includes the orbital

angular momentum /, and the spin angular momentum s3, we

obtain a relation between the spin angular momentum and the

orbital angular momentum which is known:

[H,53]=-[H.1] (6.37)

With the commutation relations

|.pi>ljJ= ihaijkpk (6.38)

from (6.35) and (6.36) we obtain the commutation relations

(5] iy

[a3 »S, :' =0

a,,s; =0
[ * 3] (6.39)
These equations have a solution of the form
53 =85na (6.40)
with the coefficient
§=-1—

2 (6.41)

Thus, we obtain the spin angular momentum in the direction
of the magnetic field

s ——iﬁaa _hfes 0 (6.42)
T2 2l 0 o '
with the Eigen value equations
h
S3y = 5031//1
h
S3Wo = 03Y,
2 (6.43)

From (6.34) and (6.41) we obtain the gyromagnetic ratio
H_ e
53 M, (6.44)

In this way, the spin is obtained from the relativistic quantum
principle, in the framework of a unitary relativistic quantum
theory.

8s =

Spin-Statistic Relation

~ We consider a system of two particles, in the states ‘l]) and
|12>, with the position vectors 7 and 7, (Figure 4).

For a two particle wave function
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GRAIRS)

(7.1)

we define an inversion operator / :
CRAUN YRS (GREIURY (72)
By applying two times this operator,
(RoPs |ivsin) = 17 i) = T (7.7 i) (7.3)
we find the Eigen values
o I,=-1  for Fermions

" |I,=1  for Bosons (1.4)

On the other hand, we notice that an inversion is equivalent
with a double rotation with the angle ; (Figure 4),

1=RWRY)

(7.5)
For a wave function rotation with a differential angle S¢x ,
w7 + 66 x 7) = y(F) + 66 x ;%,,(;)
/a
= l//(F)+ oa-r xi_y/(F)
or
e
ij=iS
— IS0y, ()

—. we find a rotation operator depending on the spin operator

(7.6)

Roz =" (1.7)
which, for.a rotation with an arbitrary angle & generates
Rz =e”" (7.8)
For ¢ = ;1 we obtain

RrW _ () _ ins (7.9)

T T
With this expression, from (7.4) and (7.5) we obtain the
inversion eigenvalues as a function of spin,

__i2nS,
I= eiZnS Il =e

I

=-1 =§ = - Fermions

i2nS,

[ [\)|»—A

,=e =1 =§,= - Bosons

|71)

( |i1} )
Figure 4. Two-particle system — a particle inversion equivalent to

a double rotation with the angle 7T .
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Quantum Particle in Gravitational Field

We consider the wave functions (1.16) in a system of
curvilinear coordinates (xcx ) - (xO X ) x° =ct,

; 1 i\ eMoc](-g s B(X .z )
w(x ,t):Wj(p(x ,t)e’w Jast ) Mgcjmd X' dx*dx®
g 1 o\ (g 9(x,7,2) .y
‘P(X ,t):WJ-W(X ,f)e M J K ) mdxldﬁc dx® (81)

with the time-space differential interval ds,
2 a B
ds” = g zdx“dx

and use Dirac’s formalism of General Theory of Relativity
[16]. In (8.1), we used the notation:

(8.2)

o=t 8.3
s (8.3)
From (8.2), we notice that
g _g dx® dx® 1
B P dS dS (8.4)

For a non-relativistic case, small particles compared with
the non-uniformities of any gravitational field, small velocities,
we consider:

ds= |g,,dx" + g dx'ds’ =~dx’=cdt = ds c
N dt dt
negligible

and linearize the wave phases:

[(-g, &' %'ds +ds) = j(—gﬁx"dxf + W)
= I(—gqxidxf + cdtW)
= J.|:—gij3'cidxj + cdt(l + %gijfc"fcj ]:|
_ j(_gg,,xfdxj thj
=—%gl x'x! +ch

In this way, for a quantum particle we obtain wave packets
with linear phases in space and time,

(8.5)

(8.6)

15 0(%9:2)

- <P(>‘c',t)e%"w"([%g”xvm“g“”xaxm]M A dids’

_(Znh) ’ o(x' x? x3)
¥ 1 . L Mye 1 3 ey g i8] O X,),2
(p(x ’t):WIW(x’t)e 7 [ 38 % ]deldxzdxs

For this wave packet we obtain a self-consistent expression
of the wave velocity,

) i X, j
L (C\/gaﬁfcafcﬁ ):2c7] :cdx
e 1 ).C,') 2 lgaﬁxuxﬁ ds

i (8.7)
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and the acceleration of a particle on a geodesic as a function

of the Christoffel symbol va of the second kind,

. . 2 ] . “ v
a’ =iv’ =c’ d J; = czl“fw dx” dx
dt ds ds ds

(8.8)

We introduce the Christoffel symbol of the first kind, and
consider the expression of this symbol as a function of the
metric tensor derivatives:

. o odx" dxY , dx" dx"
j—_ 2pj YA “r —_ 2 ]?»l—‘ = (89)
4 L ds ds & L ds ds
dx" dx"
C g z(gnpv +g7\.\/u guv,k) dS dS

For the non-relativistic case, considered here, we neglect the
spatial coordinate derivatives compared to the time derivative,
and take into account a stationary state, which means that
the derivatives with time disappear. We obtain a particle
accelerations proportional to the derivatives of the metric tensor
element g :

;_dv’ > 1 dx’ dx’ ],
a :;:_C g 2 £5.00 T &100 = 8ooa I?: 'g *gom
0 0 o

(8.10)

which means that this matrix element behaves as a potential.
Considering the Newtonian potential 7 in this matric element,

8y =1-2V

V——— [m] 1m
(8.11)
we obtain
a’ =c*g™ " (1—2V)=—c2gf" 6‘1 =
o gl)
g ox*\_r £ or\ r

With the Schwarzschild solution for the contravariant metric
elements conjugated to the spatial coordinates, we obtain the
three components of the acceleration,

[ 2mJ1 mc*
[ :
r r

= (8.13)

We notice that, for a rather small distance », we obtain a
correction of the Newtonian force, increasing the gravitational
attraction.

Quantum Particle as a Distribution of Matter

We notice that, in this framework, a particle is conceived as
a distribution of matter with a matter velocity field:

dx/ d’/ )
= —c— =cx’

dr ds

Wi
©.1)

From the relativistic quantum principle of the space-time
interval invariance,
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ds =,/g,,dx"dx"

we obtain that the covariant derivative of velocity vector is
perpendicular to this vector,

9.2)

=g, x"x"

_ STRY _ TR A STRY
O_(gp,vx X )U _guv(x x:0'+x:cx )_2gp,vx x:c

XVXV:G = O (9'3)

If, besides the accelerati(/)ln on a geodesic track, we consider
an additional component A ,

ax" .. v
=x"x" =-T" x"x% + A"

ds (9.4)

we find that this component is perpendicular to the velocity
vector:

(&4 +TH %7 )&" = A"
% VG

Hv _ an ,
xx =A /X,
x xh x"=A"x
poev il
0
x,4" =0
H (9.5)

This means that any additional acceleration to the
acceleration on a geodesic is perpendicular to the wave velocity,
which is in agreement with wave propagation (Figure 5).

In particle propagation on a geodesic, other matter
propagations are allowed only in perpendicular directions on
the particle velocity.

We consider a quantum particle as a normalized matter
distribution — a normalized integral of the matter density, in
Cartesian coordinates,

jp(x,y,z,t)dxdydz = ”\V(x,y,z,t)rdxdydz =1

9.6)
or
i _ i )2 6(x,y,z) _
[l pactacas® = [lule’] mdxldﬁM -1 o

in curvilinear coordinates. We integrate the matter density

i) i) a(x,y,Z)
p(xaf)—"/’(x’t] a2, 9.8)

%

on a space-time volume " , in two systems of coordinates.

A d e di = # ) dd de 2
i Pl ix i plet ) ©9)

and remark that the elements of the Jacobian,
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fy,

Figure 5. Plane wave — any additional particle acceleration 4* to
the acceleration on a geodesic is perpendicular to the velocity X,,.
3
3

o T
J= Det(J#ra)z Det(x’; )z o O,x 1’x2
’ olx ,X ,X ,X (910)
are also elements of a tensor transform, which, for the

metric tensor is:

B Y
gaﬁ - x,a x,B gu'v'
——

Twa Jp (9.11)
Calculating the determinants,
= Det =J’g’
g (g “’3) g 9.12)

we obtain the Jacobian as a function of the determinants of
the metric tensor in the two systems of coordinates,

e

e

Introducing this expression of the Jacobian in the integral
equation (9.9), we obtain an invariant for the matter density:

p(xa )\/% = p(x”' )\/Tg’ = Invariant

We consider a matter flow density J# , as the product
of the matter density with the velocity

Jﬂzp)'C’u

(9.13)

(9.14)

(9.15)

and the matter conservation as a null covariant divergence
n g + l—~;,l v _ Vv + l—~;,l v _ O
JU =L+ =T+ 10T (9.16)

From the general expression of the Christoffel symbol of the
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second kind as a function of the metric tensor,

1
r‘scr = gukrkvc = gu}L E(gkv,cr + g}\.G,V - gcv,?»)

9.17)
we obtain
I, :%i (80 + Lo~ 8 :%g‘“‘gm :%g’lg,\, = ﬁ(—g)\, ©.18)
At the same time,
1
(\/—g)y _ﬁ(_g),v
which is
1 (g,
- | _g)’v (9.19)

From (9.18) and (9.19), we obtain the Christoffel symbol of
the second kind in the expression (9.16),

W-z),

I# =——=
e
V=8
which takes the form of a divergence of the product of

the matter flow density with the square root of the metric
determinant,

(9.20)

g =Iig+ Ng), =rg), =bEe) =0 g1y

Integrating this expression on a volume V of spatial
coordinates,

3
JH - ) d’x=0
[ y=e),
4 (9.22)
and separating the time derivative from the coordinate
derivatives, we find a conservation law, as a matter variation in

a volume V' by the flow of this matter through the surface X,
of the volume V:

UJOE&J 0 = —l(J’”H )m dx

=" -gd’x,, m=123 (023
Zy

In the nonrelativistic case, x™ « ¢, weak gravitational
field, we obtain

J°=pi’ ~p

J7=px (9.24)

while the conservation equation (9.23) takes a more explicit
form, of density and matter flow,

Po= _(pxm ),m
(9.25)
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Conclusion

We discovered that a packet of Schrodinger wave functions,
representing a quantum particle, is not in agreement with the
Hamilton equations which describe the dynamics of such a
particles —such an agreement is obtained only when instead of the
Hamiltonian we consider the Lagrangian function. For a realistic
particle, which must have a finite spectrum, we considered the
relativistic Lagrangian, with a cut-off velocity c. We defined a
Relativistic Quantum Principle: The time-dependent phase of a
quantum particle is invariant to any change of coordinates. We
obtained a wave equation for a quantum particle, depending on
velocity, while the conventional Schrodinger equation describes
only the amplitude of the particle wave-function - it includes
a rapidly varying factor, with a phase proportional to the
particle rest mass. On this basis, the relativistic kinematics and
dynamics, the electromagnetic field equations, the particle spin,
and the Schwarzschild-Newtonian dynamics in a gravitational
field have been obtained. A quantum particle has been described
by a wave function representing a distribution of conservative
matter in motion, according to the General Theory of Relativity.
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