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Introduction
We perceive the physical world as a collection of objects, in 

a three-dimensional space of coordinates defined by a position 
vector zyx zyxr 111





++= , and in time, defined by a scalar 
t  [1-5]. For a matter object we define an inertial property called 
mass, 0M  and a dynamic quantity as the product of the mass 

with the velocity, 
t
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also define a conservative quantity, called energy, 
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as a sum of the kinetic energy ( )pT  , which depends on 
momentum, and the potential energy ( )rU  , which depends on 
the coordinates [6-8]. From the conservation condition: 
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we obtain the dynamic equations called Hamilton equations,
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while the energy function of coordinates and momenta,
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is called Hamiltonian. However, this classical description 
tells us nothing about the structure of the physical world. Only 
Quantum Mechanics tells us something about the structure of 
this world. Namely, that this world is composed of species of 
identical quantum particles. On one hand, experimentally, it 

has been found that these particles are of a wavy nature. On 
the other hand, one could find that the simplest way to define a 
quantum particle is by a wave packet, with momenta conjugated 
to coordinates and energy conjugated to time, with a single 
quantum constant 



[9-11].
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In this case, one can define a momentum operator
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and a Hamiltonian operator,
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With these operators one obtains eigenvalue equations, for 
momentum,
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and for energy, as a Schrödinger equation:
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However, when the group velocities are calculated for the 
wave packets (1.5), which with (1.1) are of the form 

We consider a quantum particle as a wave packet, and find that the group velocities in the 
coordinate and momentum spaces are in agreement with the Hamilton equations only when 
the Lagrangian is considered in the time dependent phases, instead of the Hamiltonian in 
the conventional forms of these waves as solutions of the Schrödinger equation. We define a 
relativistic quantum principle, and derive a wave equation for a relativistic quantum particle, 
the relativistic kinematics and dynamics of the particle waves, the Maxwell equations and the 
Lorentz force of a field interacting with the particle waves, the relativistic transform of such a 
field, and the spin as a characteristic of the particle waves. We consider a quantum particle as a 
distribution of conservative matter propagating according to the General Theory of Relativity. 
We obtain the dynamics of this matter in a gravitational field, the propagation in plane waves 
perpendicular to geodesic tracks, and equations of conservation.
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waves. In section 3, we consider a quantum particle in a field 
described by a scalar potential conjugated to time, and a vector 
potential conjugated to coordinates. We obtain the Lagrange 
equation as the velocity of the particle waves, the Lorentz 
force, and the Maxwell equations. In section 4, based on the 
Relativistic Quantum Principle, we obtain the dynamics of a 
quantum particle in electromagnetic field. In section 5, from the 
invariance of the time dependent phase of a quantum particle 
at an arbitrary change of coordinates, we obtain the relativistic 
transform of the electromagnetic field. In section 6, we obtain a 
relativistic equation for the quantum particle waves, show that 
the solution of the Schrödinger equation is only the amplitude 
of the wave function of a quantum particle, which also includes 
a rapidly varying factor depending on the particle rest mass, and 
derive the spin of a quantum particle wave. In section 7, we 
consider the inversion of two particles as a double rotation of 
these particles, and obtain the spin-statistic relation. In section 
8, we consider a coordinate deformation according to the Theory 
of General Relativity, and obtain the dynamics of the particle 
waves in gravitational field. In section 9, we consider the particle 
waves as a distribution of matter described by a density and a 
velocity field, and find that these waves are perpendicular to the 
geodesic tracks. We derive an invariant for the matter density 
of a quantum particle, and an equation of conservation of this 
matter. Section 10 is for conclusions. 

Relativistic Kinematics and Dynamics
A realistic particle has a finite spectrum as a function of the wave 

propagation velocity. A finite spectrum is obtained for a relativistic 
Lagrangian. According to (1.15), the invariance of the scalar time 
dependent phase variation ( )0L r  dt

  of a quantum particle wave 
function is equivalent to the invariance of the space-time interval 
ds. For such a particle, we obtain the momentum, 
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and the mass, 
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as functions of the particle velocity r and the cut-off 
velocity c. The invariance of the space-time interval means that 
a change of coordinates is in fact a rotation of the space-time 
coordinates (Figure 1).

By a well-known calculation, the relativistic transform of 
the coordinate intervals is obtained for the quantum particle 
waves. Thus, from the coordinate transform,
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with the expressions of the rotation angle trigonometric 
functions,
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we obtain an erroneous equation, contradictory to the 
corresponding Hamilton equation (1.3):
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- a minus sign is missing [12-14]. We get back the minus 
sign only if instead the Hamiltonian ( ) ( ) ( )rUpTprH 

+=,0  we 
consider the Lagrangian 

( ) ( ) ( ) ( ) ( )rUvMrUpTrpHrprrL 













−=−=−=
2

,,
2

00
               

(1.12)

In his case, the wave packets (1.10) take a form 
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with group velocities in agreement with the Hamilton 
equations (1.3):
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However, this description is still unrealistic, having an infinite 
spectrum of waves, as a function of the wave velocity r . A finite 
spectrum is obtained when the relativistic Lagrangian ( )rL 
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is considered in the time dependent phase of a particle wave:
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From (1.15), we notice that the invariance of the space-
time interval of the Theory of Relativity is equivalent to the 
invariance of the time dependent phase variation of a quantum 
particle, and define a Relativistic Quantum Principle: The scalar 
tim-dependent phase variation of a quantum particle wave is an 
invariant for an arbitrary change of coordinates. On this basis, 
in section 2 we obtain the relativistic transform of the space-
time coordinates, and the relativistic dynamics of the particle 
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for the coordinates of a quantum particle wave, we obtain 
the transform:
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which, in this case does not refer to the coordinates of some 
classical particle as in the conventional Theory of Relativity, but 
to the coordinates of the quantum particle waves.

Electromagnetic Field
When a particle with a charge e is placed in a field of a vector 

potential ( )trA ,


 conjugated to the coordinates, and a scalar 
potential ( )rU   conjugated to time, for the two wave packets of 
this particle
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a time dependent phase variation arises, with terms 
proportional to the coordinate variations, and the time variation,
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In this case, we get a canonical momentum, 
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with a mechanical component depending on the particle 
mass and velocity, and an electromagnetic component as the 
product of the particle charge with the vector potential. For a 
quantum particle in a field we consider again the relativistic 
quantum principle: The time dependent phase variation of a 
quantum particle is the same in any system of coordinates.

We are in agreement with the Aharonov-Bohm effect [15]: 
the time-dependent phase of a quantum particle ( )tr ,ψ ′ ,

t
V

m ∂
′∂

=′−′∇−
ψψψ 

 i
2

2
2

in a magnetic field includes a term proportional to the space 
integral of the vector potential of this field:
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This effect has been experimentally put out into evidence 
(Figure 2).

Besides this variation, we consider a time-dependent phase 
variation with a term proportional to the scalar potential and 
time, and the invariance of this phase. From equation (3.3), we 
obtain the electric force:
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Figure 1. The rotation of the space-time system of coordinates 
for a velocity V



 of the system ( )0 1x ct ,x′ ′′=  over the system 
( )0 1x ct ,x= .

Figure 2. Experimental evidence of the Aharonov-Bohm effect: 
between the two electron beams, a phase difference arises due to 
the vector potential A



 [4].
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while from a particle wave velocity in the momentum space 
we obtain the Lagrange equation:
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With the vector formula:
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we obtain the Lorentz force:
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with the electric field,
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and the magnetic field,
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Taking into account that the curl of the gradient is null, 
from (3.8) with (3.9) we obtain the Faraday-Maxwell law of the 
electromagnetic induction:
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Taking into account that the divergence of the curl is null, 
from (3.9) we obtain the Gauss-Maxwell law for the magnetic 
induction flow:
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we obtain the Gauss-Maxwell law for the electric field flow:
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with the Laplacian of the scalar potential as source of this 
divergence, considered as a ratio of the charge density ( )rρ  
and the dimensional constant 0ε  called electric  permittivity. 
Considering a current density under the action of the electric 
field,
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with the vector formula
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we obtain the time derivative of the electric field of the form:
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For the relation (3.10) of the two vector fields, asserting 
that a time variation of a magnetic field determines a curl of 
the electric field, we consider a symmetric relation, namely that 
a time variation of the electric field determines a curl of the 
magnetic field:
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From (3.16) and (3.17), the Ampère-Maxwell law of the 
magnetic circuit is obtained. In this way we obtain the whole 
system of Maxwell equations:
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and the Lorentz force,
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This force acts on the particle wave functions (3.1), with the 
time-dependent phase coefficient:
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as a function of the two potentials of the electromagnetic 
field:
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It is interesting that by the hypothetical relation (3.17), we 
obtain a field propagating in waves with a velocity 00/1 µε , 
in agreement with the electromagnetic theory. For the physical 
consistency, this velocity takes the limit value of the velocity of 
the quantum particle waves (Figure 3):

00

1
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Otherwise, an electromagnetic field not interacting with a 
quantum particle, or a quantum particle not interacting with any 
electromagnetic field could exist, which is contradictory to our 
basic hypothesis of the particle-field interaction.
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Dynamics of a Quantum Particle in Electromagnetic 
Field

We consider the space-time interval, 
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and the phase variation (3.2),
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For the wave velocity in the space of the momentum (3.3), 
from (3.1) we obtain a wave/group velocity of the form of the 
Lagrange equation:
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which means that the time-dependent phase of a quantum 
particle wave function is of the form of the action of the 
Lagrangian (3.20),
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With the explicit expression of the field four-tensor
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we obtain the Lorentz force,
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for the interaction of a particle wave with an electromagnetic 
field. 

Relativistic Transform of a Field Interacting with 
a Quantum Particle

For a coordinate four-vector transform, 
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in the least action equation (4.7), we obtain an invariant 
including a mechanical term and an electromagnetic term:
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Since the mechanical term is invariant to any change of 
coordinates, 

Figure 3. Wave packet of a quantum particle, with a limit velocity c 
equal to the electromagnetic field velocity.
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the electromagnetic term must be also an invariant,
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On this basis, we find the transform for a change of 
coordinates of a field interacting with a quantum particle
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Particle Wave Function and Spin
From the Lagrange equation obtained as the group velocity 

(3.5) with the momentum expression (3.3), 
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and the Hamiltonian definition 
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as a conservative function,
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we obtain the Hamilton equation
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At the same time, with the definition expression (6.2), the 
wave packets (3.1) take a form

( )
( )

( ) ( )[ ]{ }

( )
( )

( )
( )[ ]{ }

,d,
2

1,

d,
2

1,

3,i

2/3

3,i

2/3

∫

∫

−−−

−−

=

=

retr
h

tP

PetP
h

tr

trPHrPrP

trPHrPrP









































ψ
π

φ

φ
π

ψ

      

(6.5)

as solutions of a wave equation 
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which, compared to the Schrödinger equation includes a 
term depending on the velocity. 

On the other hand, from (3.1) we notice that, in a classical 

approximation, 

( ) ( ) ( )

( ) ( )

2
2

0 2

2
2

0

1

2

rL r ,r ,t M c eA r ,t r eU r
c

MrM c eA r ,t r eU r

= − − + −

≈ − + + −







    

 







  



       

         (6.7)

the Schrödinger wave function ( )trE ,ψ , we usually use in 
our studies, in fact is not the particle wave function, bat only an 
amplitude of a wave function including a rapidly varying factor,

( ) ( ) ( )
2

0 2i M c eU r t

Er ,t e r ,t
 + ψ = ψ





 

                                      (6.8)

We consider an electromagnetic field with a constant scalar 
potential for a stationary electric field, and a time-dependent 
vector potential for a coherent radiation field. From equation 
(6.2) with (3.3) and (3.20), we notice that although the vector 
potential ( )trA ,



 depends on time, the Hamiltonian does not:

( ) ( )

( ) ( ) ( )
2 2

20
0 22

2

1

1

H P,r ,t P r L r ,r ,t

M r reA r ,t r M c eA r ,t r eU r
cr

c

= −

 
 = + − − − + −
 
 −

 

   

 







 

    

 





  (6.9)

With this Hamiltonian we, obtain the total energy as a 
function of the mechanical energy and the potential energy in 
electric field:

( ) ( ) ( )
2

0

2

21

M c
H P,r ,t eU r E r ,r

r
c

= + =

−



   







              

(6.10)

With the mechanical energy as a function of the canonical 
momentum (3.3),

( )[ ] ,,
11

22
0

222
0

2

2

22
0

2

2

22
0 cMtrAePcM

c
r
rM

c
r
cM

+−=+
−

=
−

















                      
(6.11)

we obtain the canonical form of the Hamiltonian

( ) ( ) ( )22 2
0H P,r ,t c M c P eA r ,t eU r = + − + 

 

  

                 
(6.12)

According to Dirac’s well-known spin theory, we consider 



Stefanescu

23 Mater Sci Nanotechnol 2018 Volume 2 Issue 1

the Schrödinger equation

( ) ( )trHtr
t EE ,,i 

 ψψ =
∂
∂

                                           (6.13)

with the Hamiltonian

( ) ( )
( ) ( )

2 2 2
0

1 1 2 2 3 3 4 0

H p,r ,t c p M c eU r c
p p p M c eU r

= + + =

α +α +α +α +

 
 



      (6.14)

which depends on Dirac’s spin operators
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     (6.15)

as functions of Pauli’s spin operators,
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=








=

10
01

,
0i
i0

,
01
10

321 σσσ
                         (6.16)

These operators satisfy the commutation relations:

{ } 2i j i j j i ij,α α = α α +α α = δ
                                                              (6.17)

{ } 2i j i j j i ij,σ σ = σ σ +σ σ = δ
                                (6.18)

With the notation

( )321 ,, αααα =
                                                                                                                               (6.19)

the Schrödinger equation (6.13) with the Hamiltonian (6.14) 
takes a form:

( ) ( ) ( ) ( )0 0 E Ec M c p eU r r ,t E r ,t α + α + ψ = ψ 

   

                         (6.20)

with a wave function which can be written as a vector with 
two components, or a vector with four components,
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2
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φ
φ
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ψ

ψ E

                                                                                                                              (6.21)

We obtain the two-dimensional Schrödinger-Dirac equation,

( )
( )

( )
( ) ( ) ( )

( )
( )
( )

1 2 1 1
0

2 1 2 2

r r r r
c M c p eU r E

r r r r
        ψ σψ ψ ψ

+ + =               −ψ σψ ψ ψ         

    




       (6.22)

with two coupled Schrödinger-Dirac equations for the two 

components ( )r1ψ  and ( )r2ψ ,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2
0 1 2 1

2
0 2 1 2

M c eU r r c p r E r

M c eU r r c p r E r ,

 + ψ + σ ψ = ψ 
 − + ψ + σ ψ = ψ 


    


    

      (6.23)

where

( )321 ,, σσσσ =


                                                                                                                                    (6.24)

By eliminating the coupling terms, the two Schrödinger-
Dirac equations take non-linear forms, which, in a non-
relativistic approximation, small velocity, small electric 
potential, become linear:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
0

2
0

22 2 2
0 0 1 1

2

22 2 2
0 0 2 2
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E M c

E M c eU r E M c eU r r c p r

E M c eU r E M c eU r r c p r

≈

≈

 
  + − − − ψ = σ ψ   
 

 
   − − + − ψ = σ ψ  
 


    






    





   (6.25)

In the non-relativistic approximation, we get Schrödinger-
Dirac equations 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1 1
0

2

2 2
0

2

2

c

c

p
eU r r E r

M

p
eU r r E r

M

 σ
 + ψ = ψ
  
 σ
 + ψ = ψ
  




  




  

                                            

(6.26)

for the classical energy
2

0cMEEc −=                                                                (6.27)

The Hamiltonian of these equations includes a kinetic term 
depending on the momentum and the Pauli spin operators, 

( ) ( ) ( )ppppppp 

×+=++= σσσσσ i22
332211

2                (6.28)

With the mechanical momentum in a magnetic field,

( ) ( )trAetrAePp ,i, 











−∇−=−=                                                            (6.29)

we obtain the vector product of equation (6.28) of the form

( ) ( ) ( )

( ) ( ) ( ) ( )






















↑

×∇=∇×+×∇=∇×+×∇

=∇×+×∇=−∇−×−∇−=×

AAAAA

BeAAeAeAepp

φφφφ

.iiii

  (6.30)

Thus, in the kinetic term of the Hamiltonian, besides the 
mechanical term, proportional to the square of the mechanical 
momentum, we obtain a magnetic potential, proportional to the 
magnetic field, as of a proper rotation, called spin:

( ) Bepp






 σσ −= 22                                                                                                                           (6.31)

We obtain Schrödinger-Dirac equations with a Hamiltonian 
including the kinetic energy, the electric potential energy, and a 
potential energy in magnetic field, due to the particle spin:

( ) ( ) ( )

( ) ( ) ( )

2

1 1
0

2

2 2
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2

2

s c

s c

p B eU r r E r
M

p
B eU r r E r ,

M

 
−µ + ψ = ψ 

 
 

−µ + ψ = ψ 
 





  






  


                                     (6.32)

with the spin magnetic moment

σµ 

02M
e

s =
                                                                                                                                          (6.33)

and the component 

3
0

3 2
σµ

M
e

=
                                                                                                                                        (6.34)

in the direction of the magnetic field. Taking into account the 
commutation relation 

[ ] [ ] 0,, 333 =+= slHjH                                                                                                (6.35)
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of the Hamiltonian
( )cMpppcH 04332211 αααα +++=                       (6.36)

with the total angular momentum, which includes the orbital 
angular momentum l3 and the spin angular momentum s3, we 
obtain a relation between the spin angular momentum and the 
orbital angular momentum which is known:

[ ] [ ]33 ,, lHsH −=                                                                                  
                                                 (6.37)

With the commutation relations

[ ] kji plp ijki, δ=                                                                                                                                  (6.38)

from (6.35) and (6.36) we obtain the commutation relations

1 3 2

2 3 1

3 3

4 3

0
0

,s i

,s i

,s
,s

α = − α  
α = α  

α =  
α =  





                                                                                                                                    (6.39)

These equations have a solution of the form

213 ααss =                                                                                                                                             (6.40)
with the coefficient

2
i −=s

                                                                                               (6.41)

Thus, we obtain the spin angular momentum in the direction 
of the magnetic field









=−=

3

3
213 0

0
22

i
σ

σ
αα s

                                              
                          (6.42)

with the Eigen value equations

.

2

2

2323

1313

ψσψ

ψσψ





=

=

s

s

                                                                                                                                    (6.43)

From (6.34) and (6.41) we obtain the gyromagnetic ratio

03

3
M
e

s
gs ==

µ

                                                                                                                        (6.44)
In this way, the spin is obtained from the relativistic quantum 

principle, in the framework of a unitary relativistic quantum 
theory.

Spin-Statistic Relation

We consider a system of two particles, in the states 1i  and 
2i , with the position vectors 1r

  and 2r
  (Figure 4). 

For a two particle wave function 

2121 ,, iirr 

                                                                                                                                             (7.1)
we define an inversion operator I :

21212112 ,,,, iirrIiirr 

=
                                                                 (7.2)

By applying two times this operator, 
2121

2
21122121 ,,,,,, iirrIiirrIiirr 

==                                (7.3)

we find the Eigen values

12

2

1
1

1
I        for Fermions

I
I        for Bosons
= −=  =                                                                                                  (7.4)

On the other hand, we notice that an inversion is equivalent 
with a double rotation with the angle π  (Figure 4),

( ) ( )21
ππ RRI =                                                                                                                                 (7.5)

For a wave function rotation with a differential angle αδ


, 
( ) ( ) ( )

( ) ( )

( )re

r
r

rr

r
r

rrrr

S
SJ























ψ

ψαδψ

ψαδψαδψ

αδi
ii

=

∂
∂

×⋅+=

∂
∂

×+=×+

=

                                                                                     (7.6)

we find a rotation operator depending on the spin operator 
S


,
αδ

αδ






SeR i=                                                                                                                                (7.7)

which, for a rotation with an arbitrary angleα


 generates
α

α






SeR i=                                                                                                                                   (7.8)

For πα =  we obtain
( ) ( ) SeRR π

ππ
i21 ==                                                                                                                        (7.9)

With this expression, from (7.4) and (7.5) we obtain the 
inversion eigenvalues as a function of spin,

1

2

1 1

2 2

11
2

1 1

i2 S
i2 S

i2 S

I e S      -
I e

I e S      - 

π
π

π

 = = − ⇒ == 
 = = ⇒ =

 Fermions

Bosons
   

Figure 4. Two-particle system – a particle inversion equivalent to 
a double rotation with the angle π .
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Quantum Particle in Gravitational Field
We consider the wave functions (1.16) in a system of 

curvilinear coordinates ( ) ( )0 0ix x ,x , x ct ,α = =

( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )
( )

0

0

1 3 1 2 3
03 2 1 2 3

1 1 2 3
3 2 1 2 3

1

2

1

2

i j
ij

i j
ij

i M c g x x dsi i 3
/

i M c g x x dsi i
/

x , y,z
x ,t x ,t e M c dx dx dx

x ,x ,x

x, y,z
x ,t x ,t e dx dx dx

x ,x ,x

− +

− − +

∂∫ψ = ϕ
∂π

∂∫ϕ = ψ
∂π

∫

∫

 



 



  

   

  







(
8.1)

with the time-space differential interval ds,
2ds g dx dxα β

αβ=                                                                                                                                   (8.2)

and use Dirac’s formalism of General Theory of Relativity 
[16]. In (8.1), we used the notation:

i
i dxx

ds
=                                                                                                                                                   (8.3)

From (8.2), we notice that

1dx dxg x x g
ds ds

α β
α β

αβ αβ= = 

                               (8.4)

For a non-relativistic case, small particles compared with 
the non-uniformities of any gravitational field, small velocities, 
we consider:

0
02 0

00
i j

ij

negligible

ds dxds g dx g dx ds dx cdt c
dt dt

= + ≈ = ⇒ ≈ =


        (8.5)

and linearize the wave phases:

( ) ( )
( )

2 2
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11
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1
2

1
2

i j i j i j
ij ij ij

i j i j
ij ij

i j i j
ij ij
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g x x ds ds g x dx c dt g dx dx

g x dx cdt g x x

g x dx cdt g x x

g x dx c g x x dt

g x x c g x x t
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αβ

α β
αβ

− + = − + +

= − + +

  = − + +  
  

 = − + 
 

= − +

∫ ∫
∫

∫

∫

  

  

  

  

  

(8.6)

In this way, for a quantum particle we obtain wave packets 
with linear phases in space and time,
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 − − + 
 

∂
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∂π

∂
ϕ = ψ

∂π

∫

∫

  



  



  

   

  







For this wave packet we obtain a self-consistent expression 
of the wave velocity, 

( )
( )

1

2
1 2
2

j j
jj

i
ij

xdx dxv c g x x c c
dt dsg x xg x

α β
αβ α β

αβ

∂
= = = =

∂



 

 





     (8.7)

and the acceleration of a particle on a geodesic as a function 
of the Christoffel symbol j

µνΓ  of the second kind,
2

2 2
2

j
j j jd d x dx dxa v c c

dt ds dsds

µ ν

µν= = = − Γ
                              (8.8)

We introduce the Christoffel symbol of the first kind, and 
consider the expression of this symbol as a function of the 
metric tensor derivatives:

( )

2 2

2 1
2

j j j

j
, , ,

dx dx dx dxa c c g
ds ds ds ds

dx dxc g g g g
ds ds

µ ν µ ν
λ

µν λµν

µ ν
λ

λµ ν λν µ µν λ

= − Γ = − Γ = −

+ −

             (8.9)

For the non-relativistic case, considered here, we neglect the 
spatial coordinate derivatives compared to the time derivative, 
and take into account a stationary state, which means that 
the derivatives with time disappear. We obtain a particle 
accelerations proportional to the derivatives of the metric tensor 
element g00:

 



0 0
2 2

0 0 0 0 00 00

0 0
1 1

1 1
2 2

j
j j j

, , , ,
dv dx dxa c g g g g c g g
dt ds ds

λ λ
λ λ λ λ

 
 = = − + − =
 
    (8.10)

which means that this matrix element behaves as a potential. 
Considering the Newtonian potential V in this matric element,

00 1 2

1

g V
mV , m  m,
r

= −

= − =  
                                           (8.11)                                                                                                                   

we obtain
( )2 2

2 2 1

1 1 2
2

1

j j j

j j

Va c g V c g
x x

mc g mc g
r r rx

λ λ
λ λ

λ
λ

∂ ∂
= − = − =

∂ ∂
∂ ∂   − = −   ∂∂    

        (8.12)

With the Schwarzschild solution for the contravariant metric 
elements conjugated to the spatial coordinates, we obtain the 
three components of the acceleration,

1 2
1

2

2

3

21

0
0

m mca
r r

a
a

−
 = − − 
 

=

=                                                                                                              (8.13)

We notice that, for a rather small distance r, we obtain a 
correction of the Newtonian force, increasing the gravitational 
attraction. 

Quantum Particle as a Distribution of Matter
We notice that, in this framework, a particle is conceived as 

a distribution of matter with a matter velocity field:

j
jj

j xc
s

xc
t

xv ===
d

d
d

d
                                           (9.1)

From the relativistic quantum principle of the space-time 
interval invariance,

   (8.1)
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ds g dx dxµ ν
µν=

                                                     (9.2)

we obtain that the covariant derivative of velocity vector is 
perpendicular to this vector,

( ) ( )
1

0 2: : ::

g x x

g x x g x x x x g x x ,

µ ν
µν

µ ν µ ν µ ν µ ν
µν µν σ σ µν σσ

=

= = + =

 

       

0: =σ
ν

ν xx                                                                                                                                   (9.3)

If, besides the acceleration on a geodesic track, we consider 
an additional component 

µA ,

,
dx x x x x A
ds

µ
µ ν µ ν σ µ
ν νσ= = −Γ +



   

                          (9.4)

we find that this component is perpendicular to the velocity 
vector:

( )



0

,

:

:

x x x A

x x A / x

x x x A x

µ µ σ ν µ
ν νσ

µ ν µ
ν µ

µ ν µ
µ ν µ

+ Γ =

=

=

  

  

   

0=µ
µ Ax

                                                                                                                                  (9.5)

This means that any additional acceleration to the 
acceleration on a geodesic is perpendicular to the wave velocity, 
which is in agreement with wave propagation (Figure 5).

In particle propagation on a geodesic, other matter 
propagations are allowed only in perpendicular directions on 
the particle velocity.

We consider a quantum particle as a normalized matter 
distribution – a normalized integral of the matter density, in 
Cartesian coordinates,

( ) ( ) 2
1x, y,z ,t dxdydz x, y,z ,t dxdydzρ = ψ =∫ ∫                  (9.6)

or  

( ) ( ) ( )
( ) 1ddd

,,
,,,ddd, 321

321

2321 =
∂
∂

= ∫∫ xxx
xxx
zyxtxxxxtx ii ψρ

    (9.7)

in curvilinear coordinates. We integrate the matter density 

( ) ( ) ( )
( )321

2

,,
,,,,

xxx
zyxtxtx ii

∂
∂

= ψρ
                                    (9.8)

on a space-time volume V , in two systems of coordinates.

( ) ( )∫∫ =′′′′′

VV

32103210 dddddddd xxxxJxxxxxx µµ ρρ
                     (9.9)

and remark that the elements of the Jacobian,

( ) ( ) ( )
( )3210

3210

, ,,,
,,,DetDet
xxxx
xxxxxJJ

∂
∂

===
′′′′

′
′

µ
ααµ

                         (9.10)

are also elements of a tensor  transform, which, for the 
metric tensor is:




, ,

J J

g x x g
′µ α ′ν β

′ ′µ ν
′ ′αβ α β µ ν=

                                                                                                                   (9.11)

Calculating the determinants,

( ) 2g Det g J gαβ ′= =
                                                (9.12)

we obtain the Jacobian as a function of the determinants of 
the metric tensor in the two systems of coordinates,

g
g

J
′−

−
=

                                                                                                                                            (9.13)

Introducing this expression of the Jacobian in the integral 
equation (9.9), we obtain an invariant for the matter density: 

( ) ( ) Invariant=′−=− ′ gxgx µα ρρ                                   (9.14)

 We consider a matter flow density µJ ,  as the product 
of the matter density with the velocity

µµ ρxJ =                                                                                                                                 (9.15)

and the matter conservation as a null covariant divergence

0: , ,J J J J Jµ µ µ ν ν µ ν
µ µ νµ ν νµ= + Γ = + Γ =                           (9.16)

From the general expression of the Christoffel symbol of the 

Figure 5. Plane wave – any additional particle acceleration µA  to 
the acceleration on a geodesic is perpendicular to the velocity µx .
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second kind as a function of the metric tensor, 

( )1
2 , , ,g g g g gµ µλ µλ

νσ λνσ λν σ λσ ν σν λΓ = Γ = + −
       (9.17)

we obtain 

( ) ( ) ( )11 1 1 1
2 2 2 2, , , , , ,

g g g g g g g g g
g

µ µλ µλ −
νµ λν µ λµ ν µν λ λµ ν ν ν

Γ = + − = = = −
−    (9.18)       

At the same time,

( ) ( )νν ,, 2
1 g

g
g −

−
=−

which is
( )
( )ν

ν

,

,

2
11

g

g

g −

−

−
=

                                                (9.19)

From (9.18) and (9.19), we obtain the Christoffel symbol of 
the second kind in the expression (9.16),

( )
g

g

−

−
=Γ νµ

νµ
,

                                                                                                                        (9.20)

which takes the form of a divergence of the product of 
the matter flow density with the square root of the metric 
determinant,

( ) ( ) ( ) 0,,,,: =−=−=−+−=− µ
µ

ν
ν

ν
νν

νµ
µ gJgJgJgJgJ                    (9.21)

Integrating this expression on a volume V of spatial 
coordinates,

( ) 0d3
, =−∫

V

xgJ µ
µ

                                                                   (9.22)
and separating the time derivative from the coordinate 

derivatives, we find a conservation law, as a matter variation in 
a volume V  by the flow of this matter through the surface VΣ  
of the volume V: 

( )

.3,2,1,d

dd

V

2

3
,

0,

30

=−−=

−−=













−

∫

∫∫

Σ

mxgJ

xgJxgJ

m
m

V
m

m

V

         

(9.23)

In the nonrelativistic case, cxm <<

, weak gravitational 
field, we obtain 

0 0

m m

J x
J x
= ρ ≈ ρ

= ρ





                                                                                                                           (9.24)

while the conservation equation (9.23) takes a more explicit 
form, of density and matter flow,

( )m
mx ,0, ρρ −=

                                                                          
                                                           (9.25)

Conclusion
We discovered that a packet of Schrödinger wave functions, 

representing a quantum particle, is not in agreement with the 
Hamilton equations which describe the dynamics of such a 
particles – such an agreement is obtained only when instead of the 
Hamiltonian we consider the Lagrangian function. For a realistic 
particle, which must have a finite spectrum, we considered the 
relativistic Lagrangian, with a cut-off velocity c. We defined a 
Relativistic Quantum Principle: The time-dependent phase of a 
quantum particle is invariant to any change of coordinates. We 
obtained a wave equation for a quantum particle, depending on 
velocity, while the conventional Schrödinger equation describes 
only the amplitude of the particle wave-function - it includes 
a rapidly varying factor, with a phase proportional to the 
particle rest mass. On this basis, the relativistic kinematics and 
dynamics, the electromagnetic field equations, the particle spin, 
and the Schwarzschild-Newtonian dynamics in a gravitational 
field have been obtained. A quantum particle has been described 
by a wave function representing a distribution of conservative 
matter in motion, according to the General Theory of Relativity.
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