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Abstract

Matching is a methodology applied at the beginning of a study that compares two or more groups. The
main advantage for matching over random non-matching sampling is that matched study designs can
often lead to a more statistically efficient analysis. The most commonly used methods to analyse the
matched pair dataset are logistic regression models. The main advantage of using logistic regression with
matched data occurs when there are variables other than the matched variables that the investigator
wishes to control. Conditional logistic regression is one commonly used method to investigate the
relationship between an outcome and a set of covariates in matched case-control studies. The aim of this
study is to propose a truncated logistic regression analysis for matched case-control studies, an
alternative approach to conditional logistic regression methods, and to demonstrate its applicability in
matched case-control studies. We also applied the methods to a real data set and compared them. We
showed that regression coefficient estimation can be accomplished using either truncated or conditional
logistic regression methods. However, the parameter estimates for those covariates obtained from
truncated logistic regression had more precision. In conclusion, truncated logistic regression model may
be the preferred method for the analysis of matched case-control data because it is a more efficient
method.
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Introduction
Matching is a methodology applied at the beginning of a study
that compares two or more groups. For matching, a referent
group is selected to compare with the primary interest group,
defined as the index group. The matching process is performed
by limiting the referent group to make it comparable to the
index group on one or more risk factors called “matching
factors.” In a case-control study, the referent group is the
control, which is compared with an index group of cases [1,2].

The rationale for matched studies has been discussed in detail
in epidemiology texts [2-6]. In this type of study, subjects are
grouped based on variables believed to be associated with the
outcome. For example, age and sex are widely used matching
variables. If there is only one case and one control, the
matching is defined as 1:1. m:n matching refers to a situation
in which there is a varying number of cases and controls in the
matched sets [6-8].

The main advantage for matching over random non-matching
sampling is that matched study designs can often lead to a
more statistically efficient analysis. In particular, matching
may lead to a narrower confidence interval, that is, more

precision, around the parameters being estimated than would
be achieved without matching [7].

An important disadvantage of matching is that it can be costly,
both in terms of the time and labor required to find appropriate
matches and in terms of information loss due to discarding
available controls that are unable to satisfy the matching
criteria. In fact, if too much information is lost from matching,
the matching process may result in a loss of statistical
efficiency [1,9].

Statistical methods, such as the Mantel-Haenszel chi-square
test and McNemar’s test, are used to analyse a matched pair
dataset. However, most commonly used methods to analyse the
matched pair dataset are logistic regression models. The main
advantage of using logistic regression with matched data
occurs when there are variables other than the matched
variables that the investigator wishes to control. Conditional
logistic regression is one commonly used method to investigate
the relationship between an outcome and a set of covariates in
matched case-control studies. The outcome is whether the
subject is a case or a control [1,10].
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The aim of this study is to propose a truncated logistic
regression analysis for matched case-control studies, an
alternative approach to conditional logistic regression methods,
and to demonstrate its applicability in matched case-control
studies. To the best of our knowledge, this is the first trial using
truncated logistic regression analysis for matched case-control
studies. In section 2, some notations are given about truncated
and conditional logistic regression models. We also applied the
methods to a real data set and compared them. The results are
evaluated in section 3. Finally, the results are discussed and a
conclusion section is included in section 4.

Materials and Methods

Truncated logistic regression method
Truncated logistic regression is a model that is applied to
binary data consisting of a group of individuals who each have
a binary response and only if one or more of the individuals
have a positive response [10,11].

The specific form of the truncated logistic regression form is
described as follows.

� ��� = 1     ��� = ��′���1 + ��′��� = � �, ���
where P (yij=1|xij) is the event probability of jth individual in
the ith group,

� = �0�1⋮��  is (k+1) × 1 vector of regression coefficients,

��� =
1���1⋮����  is (k+1) × 1 vector of covariates associated with

the jth individual in the ith group, i=1,...,G is the number of
groups, j=1,...,ni is the sample size for the ith group, and k is
the number of covariates [10,12,13].

The truncated logistic regression method is based on the
probability that a group is observed, which is the probability
that it results in at least one event. This has the effect of
introducing q (β, xij)=1-p (β, xij) as a divisor to a conventional
logistic regression likelihood. The likelihood function for the
model is described as follows.

� � =∏� = 1
� ∏� = 1�� � �, ���  ���   � �, ��� 1− ���  1−∏� = 1�� � �, ���

The parameter estimates � are calculated using a score
function and Fisher’s information matrix by the Newton-

Raphson algorithm [14,15]. The score function for β is

� � = �log � ��� =∑� = 1
� ∑� = 1

�� ������− �� �
where �� � = �� � −1∑� = 1

�� � �, ��� ��� and

�� � = 1− �� � = 1−∏� = 1
�� � �, ���  .The parameter

estimates � is the solution of S (β)=0.

The Fisher’s information matrix is

� � =∑� = 1
� �� � −1∑� = 1

�� � �, ��� � �, ��� ������′
− �� � �� � �� � ′
The variance of the parameter estimates is � � = � � −1.

Parameter estimates are obtained by using the Newton-
Raphson algorithm as follows.��+ 1 = ��+ � �� −1� ��
where t is the iteration number. For the first iteration,�1 = �0+ � �0 −1� �0 ,�0 is taken as zero.

The tolerance level is used to determine the number of
iterations as follows.max ��, �+ 1− ��, � < ∫
where ��,  �+ 1 is parameter estimates for the mth covariate at

the iteration t+1, ��, � is the parameter estimate for the mth
covariate at iteration t, and m=0,1,…,k. The tolerance level is
taken as ϵ ≤ 0.0001.

Conditional logistic regression method
Conditional logistic regression is widely used to determine the
relationship between an outcome and a set of prognostic
factors in matched case-control studies. The outcome is
whether the subject is a case or a control.

The specific form of the conditional logistic regression form is
described as follows.

� ��� = 1     ��� = ���+ �′���
1 + ���+ �′���
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where P (yij=1|xij) is the event probability of jth individual in

the ith group, αi is the effect of the ith group, � = �1�2⋮��  is k × 1

vector of regression coefficients, ��� =
���1���2⋮����  is k × 1 vector of

covariates associated with the jth individual in the ith group,
i=1,…,G is number of groups, j=1,…,ni is the sample size for
the ith group, and k is the number of covariates.

The conditional logistic regression model is based on
conditional probabilities that condition away the group effects,
which results in a model that contains substantially fewer
parameters. In this situation, the αi are known as nuisance
parameters [10,12,13,16].

The conditional logistic regression model eliminates the
nuisance parameters from the maximum likelihood function by
conditioning the number of total observations, which are
statistically sufficient. The sufficient statistics for the ith group
described as follows.

�� =∑� = 1
�� ���

The conditional reference set is defined as follows.

��� = � = �1,�2, …,��� ′:�� ∈ 0, 1 ,∑� = 1
�� �� = ��

where R (ri) demonstrates the set of all possible vectors of ni
binary responses whose summations are ri. The maximum
likelihood function is defined as follows.

� � =∏� = 1
� ∏� = 1�� exp �′��� ���∑� ∈ ��� ∏� = 1�� �′��� ��

For conditional asymptotic inference, maximum likelihood
estimates of the regression parameters are obtained by
maximizing the conditional likelihood with the Newton-
Raphson algorithm [17].

Vision screening data
The study was approved by our local ethics committee
(ESOGU-2016-66) and was performed in accordance with the
Declaration of Helsinki after informed consent was obtained
from each subject’s parent. A Lenstar LS900 (Haag-Streit AG,
Koeniz, Switzerland) was used for all measurements. The
measurements were performed at a primary school as part of a
screening program. A total of 252 school children between 6

and 12 y of age were screened. The binary dependent variable
was whether a child had myopia or not. Various
ophthalmological covariates such as Axial Length (AL) in mm,
Central Corneal Thickness (CCT) in µm, Anterior Chamber
Depth (ACD) in mm, Lens Thickness (LT) in mm, corneal
curvatures (K1, K2) in Diopters (D), and individual level
covariates such as age and sex were measured. All
measurements were obtained 30 min after instilling two drops
of 1% tropicamide 5 min apart. Three consecutive
measurements were obtained for each eye. Only the right eyes
were included and the mean values for each variable were used
for analysis. The children were matched according to age and
gender by using case-control matching design of IBM SPSS
Statistics version 23. Pairing was done using 7 age and 2 sex
groups. For this reason, the number of matched sets consisted
of 14 groups. After matching, 200 out of 252 school children
were included in the analysis.

Conditional and truncated logistic regression methods were
applied to the data to estimate the effect of various
ophthalmological and individual-level covariates on the
probability of myopia, and the results of the models were
compared according to the parameter estimates and their
standard errors and the confidence intervals of the odds ratios.

Results
The mean measurements obtained in control cases and children
with myopia are shown in Table 1.

According to the univariate analysis shown in Table 1, AL, K1
and K2 are significant covariates with differences between
controls and myopic cases.

The matched groups for myopia according to age and gender
are shown in Table 2. There were 90 male and 110 female
children. A total of 100 of 200 children had myopia, 45 male
and 55 female.

The conditional and truncated regression models were fitted
using the methods presented in section 2, and the results are
given in Tables 3 and 4, respectively. Among the independent
variables AL, LT, and K1 were found to be significant
covariates for myopia according to the backward stepwise
(Wald) method, and the non-significant covariates were
removed from the model to simplify the analysis.

According to the conditional logistic regression results, the
odds ratios (95% confidence intervals) were 24.24
(9.11-64.51), 151.63 (8.78-2617.24), and 4.20 (2.68-6.57) for
AL, LT, and K1 respectively. However, the odds ratios and
confidence intervals obtained from the truncated logistic
regression method for AL, LT, and K1 were 18.38 (7.60-44.34),
228.15 (15.56-3344.10), and 3.73 (2.48-5.65), respectively.
Truncated logistic regression gives more efficient parameter
estimates with narrower confidence intervals. We also showed
that there is agreement between conditional and truncated
logistic regression methods for parameter coefficients.

Truncated logistic regression for matched case-control studies using data from vision screening for school children

Biomed Res- India 2017 Volume 28 Issue 15 6810



However, truncated logistic regression gives more precise
estimates.

Table 1. The mean values obtained in the right eyes of school children.

Covariates Control cases (n=100) Myopic cases (n=100) p values*

Mean ± Sd. Mean ± Sd.

AL (mm) 22.50 ± 0.84 23.18 ± 0.84 <0.001

CCT (µm) 549.76 ± 37.48 550.22 ± 35.64 0.929

ACD (mm) 3.49 ± 0.30 3.55 ± 0.31 0.136

LT (mm) 3.40 ± 0.18 3.41 ± 0.16 0.908

K1 (D) 42.73 ± 1.56 43.46 ± 1.32 <0.001

K2 (D) 43.49 ± 4.23 44.42 ± 1.43 0.039

*Independent samples t test.

Table 2. The n:n matched case-control layout of the 84 children
according to age and gender.

Matched groups Gender Age Myopia Total

n n

- +

1 Male 6 10 10 20

2  7 13 13 26

3  8 4 4 8

4  9 7 7 14

5  10 1 1 2

6  11 6 6 12

7  12 4 4 8

 Male total  45 45 90

8 Female 6 10 10 20

9  7 10 10 20

10  8 13 13 26

11  9 9 9 18

12  10 8 8 16

13  11 2 2 4

14  12 3 3 6

 Female total  55 55 110

Total   100 100 200

Table 3. The results of the conditional logistic regression.

Variable Coef. Std. err. z p-value Odds ratio 95% CI for odds
ratio

AL 3.19 0.5 6.38 <0.001 24.24 9.11-64.51

LT 5.02 1.45 3.46 0.001 151.63 8.78-2617.24

K1 1.44 0.23 6.28 <0.001 4.2 2.68-6.57

Table 4. The results of the truncated logistic regression.

Variable Coef. Std. err. z p-value Odds ratio 95% CI for
odds ratio

Intercept -141.8
3

21.12 6.71 <0.001 - -

Al 2.91 0.45 6.51 <0.001 18.38 7.60-44.34

LT 5.43 1.37 3.97 <0.001 228.15 15.56-3344.10

K1 1.32 0.21 6.22 <0.001 3.73 2.48-5.65

Discussion
There is more than one method that can be used for the same
purpose in the analysis of matched case-control data for
clinical studies. Choosing the correct method ensures unbiased,
consistent, efficient, and sufficient parameter estimates with
minimum variance. Logistic regression methods are widely
used in the analysis of clinical research involving matched
case-control data. The most widely used method is conditional
logistic regression [1]. In this study, for the analysis of matched
case-control data, we proposed an alternative method,
truncated logistic regression introduced by O'Neil and Barry in
1995 [10]. Additionally, a comparison of conditional and
truncated logistic regression models was made, and these
comparisons were shown using an application data set about
myopia.

The results of this study show that AL, LT, and K1 are
significant covariates affecting the probability of whether a
child has myopia. Our findings were consistent with the Li et
al. study, in which AL, corneal curvatures, and LT were
significant determinants of refraction [18]. The increase in AL
was found to be the most important predictor of myopia in
children [19]. These results are similar to the current findings.
The association between LT and myopia remains controversial,
although Tog et al. found an increased LT in myopic children
aged 6-12 y [19,20].

We showed that regression coefficient estimation can be
accomplished using either truncated or conditional logistic
regression methods. We also showed that there is agreement
between conditional and truncated logistic regression methods
for the coefficient estimates. The parameter estimates for those
covariates obtained from truncated logistic regression had
more precision. This was evident in the lower standard errors
of the estimates from truncated logistic regression. In addition,
the confidence intervals for the odds ratios of the truncated
model were narrower than the confidence intervals of the
conditional logistic regression odds ratios.

In conclusion, the two methods are applicable to any situations
in which a binary dependent variable and related covariates are
measured if and only if at least one individual of the matched
set has a positive binary response. However, the truncated
logistic regression model may be the preferred method for the
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analysis of matched case-control data because it is a more
efficient method.
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