Biomedical Research 2013; 24 (3): 400-413 ISSN 0970-938X
http://www.biomedres.info

The toxicity of Gold Nanoparticles in relation to their physiochemical
properties.

Clarence S. Yah

Biochemistry and Toxicology Section, National It for Occupational Health (NIOH), Johannesbud@® South
Africa.

Abstract

The rapid emergence of gold nanoparticles (AuNPSs) technology holds great promise for fu-
ture applications due to their large volume specific surface areas with high diverse surface
activities than bulk gold. These properties have made AuNPs of great importancein the de-
velopment of excellent nanoelectronic chips, promising vehicle for a wide range of biomedi-
cal and environmental applications. However, the huge impact arising from the physio-
chemical properties has given riseto new concernsfor future health status. Currently, there
isdearth information on AuNPs health effects and no regulatory safety and guidelinesrelat-
ing their propertiesto toxicities. Thisreview, therefore, focuses on the potential toxicological
aspect of AUNPs experienced so far and their interactionswith biological systems. These can
be applied as measures to improve their biomedical applications and risk assessment. How-
ever, assessing the safety issues of nanoparticles is quite challenging, because of the vast
physiochemical propertiesthat confound their biomedical and toxicological profiles. There-
fore more research with standardized NPs physicochemical properties is needed based on
the different types of AUNPs to establish both in vitro and in vivo nanoctoxicities. The estab-
lishment of each size with specific ligand propertieswill update the complex conflicting ideas
emanating from the different AUNPs safety studiesther eof.
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Introduction memory devices [11]They also have extensive potential
biomedical applications in drug delivery, gene &psr;
Nanotechnology is the study of matter at the atamie ~ photothermal and radio-theraplgjosensing as well as
lecular level with attention focused from 1 to 166  contrast agents for cancer, diagnostic tracers,ainilin
diameter nanoscale size [1-3], Other scientistsame it  zation of enzymes and cell imaging [1}2-15. Other
in terms of its volume specific surface area (VSSA)uses include water and hydrogen purification, piaitu
greater than 60 ffen®, reflecting the critical importance control and as catalysts in carbon monoxide oxdati
of surface reactivity of nanomaterials rather tee [4].  [16-19]. However, despite their huge potential ieniéen
Nanomaterials especially engineered gold nanonadteri the realm of environmental, biomedical and indastri
hold great promises for future applications dué targe  applications, very little is known about the shamtl long
VSSA thereby amplifying their electrical, chemicale-  term health effects in organisms and the enviroimen
chanical, thermal and optical propertigs6] that differ ~ Reports show that synthesized NPs can circulatéen
from bulk gold. Bulk gold is considered bio-inert, a body for extended periods of time without beingcégd
property found only at the macroscopic level, but aby the body's immune system. All these behavioues a
nanoscale size, gold exhibit different propertiae tb its  guided by the small size, shape and surface charpes
surface plasmon resonance excitation characteyiffic  is of concern because during syntheses and apphsat
9]. Gold nanomaterials are currently used to enhancgold nanoparticles (AUNPs) of various sizes, shameb
solar cells [1and as liquid crystal that acts as flash ~ surface charges are generated that may be of hesith
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Currently, there are very limited data and no safetd  methods of AuNPs synthesis include the use of bielo
regulatory guidelines concerning the manufacturd ancal agents such as microbial enzymes, plant phgtach
application of nanomaterials. This review, therefdo-  cals or microorganisms such as bacteria and yedist c
cuses on the properties of gold nanomaterials hanl t [31-32]. For example chickpea leaf reduces 0.1mM
interactions with biological systems. This will prde = HAuUCI4 solution to AuNPs at room temperature as wel
information on how AuNPghysicochemical properties, as capping the AuNPs from aggregating [38s-
including those of attached functional groups iefloe  cherichia coliK12 have a fantastical behaviour to bio-

cellular responses both vitro andin vivo. synthesis AuNPs at room temperature without the-add
_ _ tion of growth media, pH adjustments or the inaduasof
Literature Search Information. electron donors and stabilizing agents [34]. Thash-

Data for the current study were obtained from u#&io metic processes have revolutionized the nanoteogyol
indexing journal sites such as PubMed, Medline, Emfield entirely.

base, Global Health, SCOPUS/Elsevier, Web of Seienc

Springer, Langmuir, Google Schol&gcientific andpeer-  The role played by microbial systems in AUNPs sgnth
reviewed reports, conference proceedings published insis is vital because of their natural ability aneamanism
English. With the search terms as “gold nanopasicl to detoxified metallic gold ions through the redoist
production, synthesis, biomimetic synthesis of godd  process either extracellularly or intracellularlg ap-
noparticles, toxicity, uses of gold nanoparticlasic-  posed to chemical synthesis of AUNPs (34-35]. Tioeee
tionalization of gold nanopatrticles, types and sisapf are more environmentally friendly to exposed godd n
gold nanopatrticles, toxicity of spherical and r@hopar- nomaterial than chemical synthesis [34,36]. Howgever
ticles, toxicity of biomaterials of gold nanopal#ig, gold  microbial and biological synthesis suffers from poo
nanoparticles ligands, effect of gold nanopartadpect mono-dispersity, random aggregation, non-uniform
ratio on its toxicity’ toxicity of chemically syn@sized shapes scale up as compared to chemical syntf&&jis.
gold nanoparticle, biologically synthesized golaho-  Therefore production efficiency and specificity of
particles, effect of gold nanoparticles on cellsh&ds  AuNPs using biological processes is poor and imgrov
include toxicity of gold nanoparticles biconjugaté®-  ment in the design and production of AuNPs by biomi
accumulation of aggregation and agglomeration &f go metic technique is needed.

nanoparticles, cellular toxicity of gold nanopddi:
Currently, these methods are being modified to pred

Synthesis of Gold nanoparticles. AuNPs of various sizes using various reducing agent
In general, AuNPs are synthesized by the chemial r [22,31, 34,37]. The synthesized AuNPs differ inesaV/
duction of chloroauric acid (HAug)l using various re- forms with some existing as branched nanocrystéls o
ducing agents [2025]. The reduction process causesvarying shapes i.e. monopod, bipod, tripod or peica
Au®" to be reduced to neutral gold atoms which furtherstructures [38]. After production, these differdatms
become supersaturated and precipitated as more golte stabilized from aggregation and agglomeratidth w
atoms aggregate to form sub-nanogold particles. [19]organic ligands such as peptides, proteins, furigok
There are several methods involved in the synthebes and polymers such as polyethylene glycol (PEG)
AuNPs, with HAuC} as the main source of the gold at- [23,4041]. Furthermore, these different forms of ligands
oms [22]. These methods include the following miodif  stabilized AuNPs can be modified by attaching other
tions (1) The Turkevich method which produces monofunctional groups based on the application of ahoic
dispersed spherical AUNPs suspended in water \itith ¢ [20,40].

rate ions acting as both reducing and capping adeéf

(2) The Brust method that produces AuNPs in organid he size of AUNPs in terms of the proportion of thitb
liquids which are normally not miscible with waf{g7].  height that is the aspect ratio (AR) in relatiortdwicity

(3) The Perrault method which uses hydroquinone tds still debatable. Different AR of AUNPs givesfdifent
reduce HAUCJ in an aqueous solution to produce AuNP plasmon bands and wavelengths that equally extibit
seeds [28]. (4) The Martin method which generates “ ferent colours [42-43]. For example the study bpihet
ked” monodisperse AuNPs in water due to the redncti @l [44] showed that various encapsulated AuNPsasarf
of HAUCI, by sodium boron tetrathydriddlaBH,) [29]. charges, sizes and shapes to human HEp-2 and canine
(5) The Sonolysis process that produces AuNPs based MDCK cells exhibit different cytotoxic effects. Hawer,
ultrasounds, reacting in an aqueous solution of €lau the differences were exhibited by the shapes, where
in glucose using hydroxyl and sugar pyrolysis radias CTAB encapsulated gold nanorods (AuNRs) were rela-
reducing agents3p]_ (6) Other friend|y and Cheaper tively hlgher in CytOtOXiCity than citrate stabiid gOld
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nano-spheres. Within the AuNRs there was no signif Synthesized AUNPs come in a variety of sizes aagesh
cant difference between the AuNRs different ARs][44ranging from 1 nm to 500 nm: some as rods, spheres,
but increasing AR of AuNPs are difficult in cellptake tubes, wires, ribbons, plate, cubic, hexagonangular,
than those with lower AR [44-46]. Currently the ale tetrapods, etc [38, 57]. The small size and thesedle-
ance findings of AUNPs AR by phagocytic cells aitt s like' penetrating ability into cells have also mad@NPs
under investigation because of the encompassed coexcellent carriers in biomedical and molecular dggl
plexity exhibited the physiochemical propertiesbafth  techniques [58]. This needle like feature as regbtiy
the AuNPs and their bio-conjugates cellularly. 8#tacdby De Jong et al [53] have ease the absorption, sty
Qiu et al [47] have shown thatllular uptake is highly circulation and distribution of AUNPS in bio-systems a
dependent on the AR and functional groups attatieed size dependent factor. These findings were simiiar
cause ligands such as CTAB can equally enter aélls  those earlier reported by Connor et al [59] whonfibu
or without AuNPs, destroy mitochondria, and inducethat AuNPs of approximately 18 nm in diameter could
apoptosis47]. The cationic PDDAC-coated AuNPs with penetrate the cells without cell injury and toxicitA

an AR of 4 have been shown to possess both amifisig study by Tsoli et al [60] also demonstrated thalNRs of
cant toxicity with high cellular uptake, showingceldent  approximately 1 nm in diameter could penetratectle

photothermal therapeutic properti@¥] The method of and nuclear membranes and attach to DNA without cel

AuNPs synthesis also affects toxicity [42-43], hoerwr Iury and C(.e”. death. The mechanlsm of entry 'C.MS
AR in terms of cellular toxicity should be exolainwith without cell injury has not been elucidated, butéems
. Y Sh explamnet the small nanosize plays a major rolée small size of
caution because of the dearth information available . o -
. . . . the AuNPs therefore, facilitates their incorporatioto
terms of AuNPs toxicological considerations. Theref

. - . . biological systems for subsequent probing and nezdif
more systematic AUNPS toxicity StUd'eS are essetuiia tion [61]. These unique features of AUNPs havetiieain
decide the role of AR properties relative to celfufe-

sponses to various chemical properties transducing intsididar

' cellular studies where some are reported eithenxds
or non toxic. Some display size dependent toxititg to
Routes of exposuresto Gold Nanoparticles. the presence of coated surface ligand62%3, while
Exposure to AuNPs can occur during development; syrothers because dfieir large surface area to volume ratio
thesis, and applications by direct injection oresiion  provide platforms for increase surface particlevigt
into the system, and waste disposal [48-49]. Exposu [54]. This therefore, contributes an easy flexipighway
can also arise from AuNP-composite bound to consumeof penetration and reactivity in biological systehan
products in markets, homes and outdoor activitt.[  bulk gold material.
Such exposes can account for their accumulaticthen
soil, water bodies and environment. Other mainm@ke In terms of size, De Jong et al [53] found thatnt
routes of exposure include inhalation, absorptisonugh ~ AuNP when administered to experimental animals can
skin contact and release from implants [49, 51-6Rf-  circulate more within 24h than other sizes. The mec
thermore, the approval of AUNRs various biomedical nism of this 10 nm AuNP widespread has not beeci-elu
applications by the Food and Drug Administration dated. Apart from the fact that AUNPs circulatiomshe
(FDA) has led tdncreased applications as drug carriers,system are highly size dependent, earlier findibgs
cancer therapy and biological applications [51553- Hauck et al [64] also showed that other sizes &ichm

AuNPs when exposed within 30 min can be the most

Other mode of AuNPs exposures include airborne an@bundant cellular AUNPs in the a system.
surface materials adherence which sometimes afie dif
cult to detect. They can therefore, persist and bio
accumulate in such environment making them reddily
translocate into the food chain thereby influenciagh
biotic and abiotic processes [56]. This enhancesuih+
take of AUNPs by other environmental organisms sch
algae and fish which can further be consumed byaisi
and humans.

The interactions of AuNPs with biological systeme a
often related to their physiochemical charactessti
which enable them to be internalized within cebs,
situation which is not possible for larger partil&his is

one of the reasons why AuNPs may be toxic tharetarg
particles when compared on a mass dosage. This
emphasizes lies in the importance of their dimendioe
large surface area to volume ratio which enablesnth

The effect of size and shape of Gold nanoparticles tox- applicable in biomedical systems [65,66].
icity.
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Table 1. Summary of some selected in vitro gold nanopasgicigotoxicity studies

Type of Test
Type of cell line Size of AuNP Dose Shape, Surface Biological effect \Ref
group
Human leukemia cells ~4,12 or 18 nm in diame- ~ 25mM-250mM Citrate coated MTT assay Non toxic to K562 cells [59]
(K562 leukemia cell line)  ters
Mytilus edulis 750 ppb gold-citrate 1mM Citrate coated Oxidative stress, AuNPs induced oxidative [73]
nanoparticles Catalase activity, Stress in bivalves, especially in
neutral red retention digestive gland
time assay, 2DE gels
1, ~13 nm,
Human dermal fibro- 10-50 nm 10, 50, 100,  Spherically citrate MTT 20 nm were non toxic even at 300  [74]
blast-fetal 200, 300pM coated UM
Healthy volunteer blood 30-50 nm 0450 & 0420  Colloids citrate- 2D PAGE, AFM, 69 different proteins bound to the [75]
specimens mg/mL stabilized DLS, and TEM surface of AuNPs. No detectable
platelet aggregation, Change in
plasma coagulation time, and com-
plement activation.
The human umbilical 100 nm in diameter 20 pL Spherically bare Microtubule staining The AuNPs were found in the en- [76]
vein endothelial and PCL-coated dosomes
(ECV-304) cells gold particles or lysosomes, cytoplasm, nucleic
envelope, and nucleus. Bare were
slightly toxic while PCL coated had
no effect
Human hepatocellular 25+3.5nm 1.0 nmol /L  Spherical particles ~ MTT, quartz crystal AuNPs show low cytotocxicity but [77]
carcinoma HepG2 cells AuNP, microbalance (QCM) can disrupt adhesion and enhance
1.2_mol/lL and flow cytometer apoptosis of HepG2 cell. Paclitaxel
Paclitaxel (T) assay plus AuNP inhibits the growth of
HepG2 cell more effectively than
Paclitaxel alone
Human skin cell line 1.5 nm diameter 10 pl Spherically and MTT Spherical AuNPs were non toxic. [78]
HaCaT keratinocytes nanorods CTAB AuNP Nanorods were highly toxic
coated due to presence of CTAB coat layer
used for the synthesis of nanorods.
Human prostate 30-90 nm diameter 1.5nM Spherical MTT and LDH assay No LDH leakage observed up to 34 [79]
carcinoma PC-3 cells AuNPs nM.
Plain spherical 50 and 90 nm in
diameter induced the
proliferation of PC cells
Pancreatic carcinoma 20-nm spherical 100-nmol Spherical L Flow cytometry Panc-1 had viability of 46% * 12%, [80]
cell line (EGFR-1, Panc- cetuximab- Cama-1 cell had a viability of 92% +
1, and Cama-1) conjugated 2%
AuNPs (L C225-
AuNP)
Optical cells 20 nm 2mM protein-coated Optical images AuNP was found to disrupt the mixed ~ [81]
phospholipid/cholesterol monolayer
MRC-5 human lung 20 nm in diameter 1nM FBS coated Oxidative stress PCR  Oxidative damage, induced upregu- [70]
fibroblasts AuNPs array, Lipid hydrop- lation of antioxidants, stress re-
eroxide assay, West- sponse genes and protein expres-
ern blotting sion
Mammary adenocarci- Length=44.8+2.8 and 20ul PEG coated MTS assay PEGylated particles did not induce [82]
noma (SKBR3), Human 41.8+3.3 nanorod and toxicity to all the cells tested. PEGy-
leukemia cells (HL60) Width =18.5 £1.6 PSS-coated lated gold nanorods also exhibited
and 11.7 £1.4 respec- nanorods better dispersion stability, PSS-
tively coated rods tended to flocculate or
cluster with induced toxicity
A549 cells, a human 15 nm 200-2000 pg AuNPs Real-time PCR, No adverse effects from [83]
alveolar epithelial-like ELISA AuNPs were observed. No induction
cell of oxidative
stress markers and
inflammatory cytokines
Human Sperm 9nm 500 pL AuNPs media The AuNPs penetrated the sperm [84]
AuNPs + cells head and tails. 25% of the

sperm became non motile as com-
pared to 95% control
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Table2. Summary of some selected in vivo gold nanopartiobasity studies.

Type Sizeof AUNP  Route of exposure Dose Surface coating Test Biological Effect Ref
exposed

organism

Male WU 10, 50, 100 Intravenously One ml Spherical AUNPs Organ Index e AWNPs were found in the liver [53]
Wistar- and 250 nm, and spleen. 10 nm was present in
derived rats all blood, liver, spleen, kidney,

testis, thymus, heart, lung and
brain. Larger particles were only
detected in blood, liver and spleen.

Female 2, 40 and 100 Intratracheal 1.4-1.6 Negatively charged Organ index AuNPs found in the liver and mac- [88]
mice nm mg/kg monodisperse  and (liver) rophages
spherical AUNPs-
Mice 135 nm in Oral, 137.5-2200 Spherically and Animal sur- High AuNPs induced decrease in  [14]
diameter intraperitoneal na’kg citrate-coated vival, weight, body weight, red blood cells. No
routes and the tail hematology, effect at low level. Oral admin
vein  intravenous morphology, caused a significant decrease in
injection and body weight, spleen index, and red
organ index blood cells.
BALB/C Naked 3 to Intraperitoneal 8 Naked colloids Physical and AuNPs of 8,12,17, 37 nm induced [68]
Mice 100 nm mg/kg/wee  AuNPs behavioral fatigue,loss of appetite, change of
k examination. fur color, and weight loss. Most

died within 21 days. 3-5 nm did not
induce sickness.

Male Wis- 20 nm Tail-vein intrave- 0.2-mL AuNPs Organ index AuNPs accumulated and persisted[37]
tar rats nous injection (0.01 in the liver and spleen than other
mag/kg) organs. Many up and down regu-
lated genes were expressed.
Male Mice 125 + 1.7 Intraperitoneal 40-400 Colloids citrate Animal sur- The AuNPs were able to cross the [87]
C57/BL6 nm ug/kg/day coated AuNPs vival, weight, brain barrier and accumulate in
hematology, neural tissues but No toxicity was
morphology, evident. But there was uptake in the
and spleen, kidney and liver
organ index
Rat 5nm Tail vein intrave- 570-870 PEG Coated AuNPs Organ index PEG Au NPs accuncutatetly [90]
nous and una/kg in liver and spleen.
intratracheal
Male CD1 1541 nm Tail vein intrave- 150-200 Human serum albu- Organ index Functionalized AuNPs accumulate [91]
mice nous injection, pL min (HSA), in the hippocampus,
scanned with the polyallylamine thalamus, hypothalamus, and the
eXplore Optix to hydrochloride, poly- cerebral cortex.
observe the distri- styrene-4-sulfonate
bution coated AUNPs
pattern (brain up-
take)
BALBc/c 2.5+1.0nm Subcutaneous 200ul PEG-TMPC coated Organ index 100% survivallahe different [92]
AnNHsd injection concentrations of PEG-TMPC and
female TMPC. Particles present in the
mice organs but TMPC is not suitable

for in vivo studies

Other studies of size-dependent cytotoxicity hagerb 20 and 100 nm in diameters have been shown to mave
demonstrated in triphenylphosphine stabilised AuNPspparent effect on viability of human retina miascu-
using four cell lines such as tissue fibroblast92@), lar endothelial cells [69]. Although some studiesvéda
epithelial cells (HelLa), macrophages (J774A1) andshown AuNPs not having an effect on cell viabilityis
melanoma cells (SK-Mel-28) [67]. Data obtainedniro important to note that genotoxicity can occur witho
these studies shown that cellular response isdgpend-  cytotoxicity and may result in genetic damage aad-t
ent. For example 1.4 nm AuNP was observed as ttst moscription alterations which are not phenotypicadly-
toxic responsible for rapid cell death by necr¢6i§ as  pressed. A study on the effect of 5nm to 20 nm AsINP
compare to 15 nm which was shown to be non-toxioon MRC-5 human fetal lung fibroblast cells havevgbd
[68]. This suggests that “larger” NPs are non-toxic no influence on the viability of MRC-5 treated edlV0-
vitro. Furthermore, othen vitro studies on AuNPs of 71]. However, cell proliferation was inhibited whiclasv
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linked to downregulation of cell cycle genes. Ma®
oxidative DNA damage has been observed in conjuncGosens et al [93] believes that single AuNPs casepo
tion with a downregulation of DNA repairs [71]. Fur greater health effects than their agglomeratesagoge-
thermore, other reports have revealed that AUNF54f gates counter parts. Because of the agglomeraids an
nm, 5-7 nm and 20-40 nm are non-toxic to MRC-5scell aggregates relative larger sizes, they are restrifrom
however when they were 10 ppm induced apoptosis translocating easily across membranes as compared t
and up-regulated the expressions of pro-inflamnyator single nanogold particles. Although, when Gosenal et
genes interlukin-1 (IL-1), interlukin-6 (IL-6) andimor  [93] intratracheally instilled AuNPs agglomeratasda
necrosis factor (TNF-alpha) [72]. Table 1 summsrie spherical single dose of 1.6 mg/kg AuNPs (50 nra5gr
some AuNPsn vitro toxicity studies that examined size, nm) into rat lungs, both particles gave mild pulragn
type of cell culture and their biological effects. inflammation at the same dosage. Meanwhile, earlier
reports by Muhlfeld et al [89] and Sadauskas €88]
The effect of AUNPs shows that the smaller the AuNPshowed that when AuNPs are inhaled and deposited in
the higher the probability of it to cause toxicily well as  the lungs, only a small fraction (both single agdlam-
bind easily on cellular surfaces. For example 14 n erates) can be phagocytozed with a small partlgrans
AuNP in diameter was found to bind with DNA and cated across the alveolar epithelium. Nevetheltss,
affect genes (mutation) as comparable to theirelarg nanosize factor is a major significant feature étedmin-
ccounterparts. ing the deposition, translocation, distribution date of
AuNPs. These facilitate the crossing of the blooairh
Some studies have shown that AuNPs between 30 arghrrier by AuNPs, which accumulate in neural tissag
110 nm when exposed to rats for up to 15 days,acan well as in the placenta and fetus [87, 94-95]. iEare-
cumulate in the lungs, olfactory bulb, spleen, pbse  ports by Takahashi and Matsuoka [94] reported e u
gus, tongue, kidney, aorta, heart, septum and bibloid take of colloidal AuNPs of 5 and 30 nm after maakrn
was quantified by means of inductively coupled plas intravenous injection in rats. Other studiesli®e et al
mass spectrometry (ICP-MS) [85]. The results oledin  [96] andMyllynen et al [95] have also showed the inter-
so far were similar to those earlier reported bikefmka nalization of 10-30 nm PEGIlyated AuNPs in the ptace
et al [86] where engineered gold nanomaterials®ibn  tal cells which are comparable to immunoglobulinat t
were found retained in rat's lungs before trandioga cross the placenta (IgG). The findings from theadiss
into other tissues. These were also in agreemeitit wi also showed AuNPs with sizes up to 240 nm crog$iag
those reported by Lasagna-Reeves et al [87] whd uséhuman placental barrier without affecting the Viapof
ICP-MS and GF-AAS to determine a significant amountthe placental explants. Other findings by Sadauskas
of AuNPs in the liver, blood, brain, kidney, spleamd  [88], however, showed that AUNPs of 2 and 4 nm when
lungs. Sadauskas et al [88] also demonstratedntlogiet  injected intravenously or intraperitoneally respeagy
of 2, 40 and 100 nm AuNPs in mice with similar ®ol did not seem to penetrate either the placentadvaori
with the liver as site of huge bioaccumulation,hadinly ~ the blood - brain barrier but were found in the roac
a small fraction translocating into the blood ciation phages and Kupffer liver cellénformation from litera-
and macrophage endosomes. The 2 nm AuNPs were fuure envisages size as the most significant phlyprog-
ther found to be the most translocated particlésimthe  erty responsible for inducing AuNP toxicitig].
liver cells. Thein vivo behavioural activities of these
particles were due to their large surface areaumér  Furthermore, the influence of AuNP toxicity hasoals
mass. This shows that AuNPs bio-distribution vaithw been shown to vary due to the different particlapss.
different sizes due to the availability of atomadg to  Among the shapes, rods shaped AuNPs have been re-
take part in various chemical reactions. ported to demonstrate more toxicity than their sighé
counterparts. Research on gold nanorods has shatn t
The mechanisms of biodistribution of AUNPs so far d they are more toxic to human keratinocyte cellsGBB)
scribed are via endocytotic-exocytotic activity @ada  as compared to spherical gold nanomaterials [6B T
lesser extend by paracellular transport (transpdrt mechanisms of less toxicity of spherical AUNPs com-
molecules around cells and via tight junctions pifree-  pared to nanorods are yet to be demonstrated; feswev
lial cells) [88-89]. Such mechanisms are due tdedif they are all engulfed on their surface propertgisdies
ences in the surface properties of the AuNPs,yibe 6f  investigating the cytotoxicity and cellular uptatdegold
animals used and the route of exposures. Tablentnsd  nanorods on human breast adenocarcinoma cell line
ries some of thén vivo AuNPs toxicity studies which (MCF- 7) also reported loss of mitochondrial intggim
examine the size, route of exposure and biologiffatt. cells treated with nanorods [47] as compared t@sgdl
Biomed Res- India 2013 Volume 24 Issue 3 405
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shapes [77]. Li et al [70] also showed that naketlRs [42, 92]. Takahashi et al [94] reported the modifyof
(20 nm in diameter) when taken up by MRC-5 humangold nanorods with phosphatidylcholine to reducto-cy
lung fibroblastin vitro can induce autophagy (degrada- toxicity associated with the CTAB molecule on tlano-
tion of a cell's own components via lysosomal machi rods surfaces. Another study by Goodman et al][103
ery) concomitant with oxidative stress, stimulating up-investigated the hazardous effect of AuNPs modified
regulation of antioxidants, stress response gemg®e-  with an amine and carboxyl groups on Cos-1 cedid, r
tein expression. Other studies have also shownrodso blood cells, andE. coli cells. Their results showed that
toxicity to be highly associated with surface laysed anionic AuNPs species are non-toxic to cells, waere
for the synthesis of nanorods such as CTAB [Jiere-  cationic species can cause moderate toxicity ircells
fore the association of surface stabilizers anatfonal  lines. The authors suggested that toxicity wastedlao
ligands chemistry or composition should not der-  the interaction of a positive charge on the ammuaniu
looked. Alsoas the application of AUNPs are increasingspecies with a negative charge on the lipid bilafesell
in medicine to diagnose and treat diseases detddtal membranes.
on the possible toxic effect of various sizes, sisapnd
ligands of the AuNPs are needed because the currefither findings reported by et al [67] showed thdt Am
available information are limited and inconsistent. AuNPs in diametercapped with triphenylphosphine
monosulfonate can cause necrosis via the oxidatiess
The effect of ligands and bio-conjugates on the toxicity =~ and mitochondrial damage, while Gu et al [104] fun
AuNPs. that 3.7 nm AuNPs in diameter modified poly(ethglen
In nanotechnology, ligands are functional groups atglycol) (PEG) were non toxic when internalized et
tached onto the surfaces of NPs thereby modifyireirt cell nucleus of human cervical cancer (Hela). This
surface activities. The functional groups are Ugual-  shows that functionalized molecules play a sigaiiic
tached either covalently or non-covalently onto s  role in AuUNPs toxicity.
by chemical processes (98-99). Place-exchang#iagrac
is the most versatile and widely used method ftnoin
ducing functional groups to AuNPs (57,92). Theelyd
attached functional groups onto AuNPs are highlgilav
able for further conjugation (57). Polyethylene aglly
(PEG), poly-L- lysine (PLL), poly- D- L- lactic-cogly-
colic acid (PLGA) and their co- polymers have beeo-
cessfully applied to develop novel biocompatibledNfRs

Some findings showed that functionalized AuNPsrate
cytotoxic but can cause a slight reduction in t&ctive
oxygen and nitrite specie$9, 63,105].However, ac-
cording to the findings by Bar-ltaet al and Pan et al
[61,67], functionalized AuNPs with a concentratioh
62.5 mg mt' of triphenylphosphine monosulfonate

- ' VLS (TPPMS) utilized as ligand is non-toxic, whereas-co
[14]. Of these, PEG has gained popularity as afylodi  centration higher than 625 mg nilcan result in mor-

agent due to its amphiphilic and solubility chaesistics  p5|ogical malformations of zebrafish embroyos.ligar
[12]. studies by Tsoli et al [60] and Pan et al [67] eded that

. . 1.4 nm AuNPs functionalized with TPPMS are able to
Hetero-functionalized PEGylated mono protected -CluSping on dsDNA major groove and disrupt cellulardun

ters (MPCs) with a thiol group on one terminal @nd {jon However, their findings failed to indicate ether
reactive functional group on the other have becpo® 1o effect was specific to gold 1.4 nm or to allNRs
ular for AUNP applications [100]. Preferred end@®  ,5ted with TPPMS. In otheelated study it was found
for hetero- functional PEG AuNPs are maleimideyVin hat the toxicity and biodistribution of PEG-coated
sulfones, pyridyl disulfide, amine, carboxylic agidy-  AyNPs 20 nm with TA-terminated PEG5000 has more
droxyl, methoxy and esters [101] stability with lower toxicity than 40 or 80 nm AwRs
functionalized with TA-terminated PEG5000 [90].idt
Functionalization of AuNPs increases the circulatio therefore, evident that functional groups on Auldfsct
period of the NPs in the blood stream [12]. A gtutt  toxicity. An investigation into the effect of sizad the
vestigating the bio- distribution of PEG modifiedda presence or absence of sodium citrate residueshen t
non- modified gold nanorods in mice reported adarg cytoxicity and uptake of AuUNPs in alveolar typectlls
percentage of modified AUNPs in the blood in casttta  has showed the reduction in cell viability due ¢olism
unmodified particles over the same time period [102 citrate residues on AuNPs [52].
Other data have shown that surface modified AuNPs
have the ability to reduce cellular toxicity assted with  However, when Boca et al [106] examined the cytiotox
chemical surfactants used during the synthesiseoNPs  effect of chitosan capped-AuNPs on chinese hamster
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ovary cellsin vitro, the conjugated particles were found ing; the NP thereby promotes refolding which can be
to tranverse the cell membrane by endocytosisuamty used to refold proteins in a chemical denaturede sta
dark field microscopy imaging, it revealed85% of the [110].
cells were viable even after long period of expesur
This, therefore, shows that chitosan-conjugated RP&IN It is important to note that modifications of NPfsiges
can be deemed to have great potential in cellolaging  may cause undesirable ionic interactions with lgjal
or photothermal therapy as they are non-toxic caetba systems [73], due to changes in surface chargeay Ma
to other coated AuNPs. AuNPs are stabilized with surface charges to preven
aggregation via electrostatic repulsion [42], phayia
Oberdorster et al [107] earlier showed that, phgis-  significant role in toxicity of the NP. AggregatédiNPs
face composition coupled with size of the NP isoaict-  have modified surface charges which intend inflgenc
able for the observed toxic effects. However, ogtad-  changes of cellular environment and thus alterimg t
ies by Bar-llan et al [61] demostrated that zelish-em-  cellular behaviour and cellular toxicity [79].
bryo toxicity depends more on its surface chentioah-
position rather than on particle size. This impltat Apart from earlier reports that cationic are motya
surface functionalization or coatings of AuNPs fas toxic than anionic AuNPs [103], other reports by
very huge impact on the toxicity of nanomaterials. Schaeublin et al [111] have shown that both cati@md
anionic AuNPs are toxic to cells. Schaeublin eflafl]
Furthermore, Cho et al [108] showed that PEG-cohfed further showed that both positively and negatively
nm AuNPs when injected intravenously in to BALB/C charged AuNPs can alter the mitochondrial membrane
mice can elicit an immune response and apoptogts wi potential resulting into oxidative stress. The axice
further accumulation in the liver and spleen aftaveek  stressaccording to current findings lyikawaet al [112]
of administration. The findings of Wargt al [97] in- enhances the production of reactive oxygen specégs,
volving the intravenously injected CTAB- cappeddjol ious immunologic stimuli, inflammation, someman
nanorods into rats circulated in blood as the miairte  diseases such as neurodegenerative disorders, and
of bio-distribution. Similarly, Hirn et al [L09]so found  cancers. Apart from thesbe anionic and cationic sur-
the accumulation of AuNPs mainly in the liver, sple face charges of AuNPs can stimulate lymphoid cells
and to a lesser extend in the kidney, brain, muan® phagocytosis to an extend greater than neutral AuNP
bone. Those found in the spleen and Kupffer cglis-1  [79]. Therefore, the wider the charge differences on the
phocytes form aggregates within the lysosomes [B7&  AuNP surfaces, the greater thpportunity for it phago-
formation of aggregation scenario can result imen€  cytic activities and the inflammatory responses.
plex biological system of an unknown response amd t
icity in vivo. This indicates the need to study the biologi-Other studies have shown that surfaces chargesPsf N

cal effect of NPs in biological systems. enhance their uptake into cells. For example figslihy
The effects of surface charge on the toxicity of gold Chithrani et al [62] using incubated citric acid coated
nanoparticles. AuNPs have shown that NPs surface charges can-pote

Surface charge which is measured by zeta poteistial tial influence their uptake by mammalian cell lideLa.
one of the major physical characteristic influegcin Furthermore, He et al [113] also found that altHotlge
AuNPs toxicity [108]. The application of zeta pdiah  surface charges play a significant role in phygosgs
provides useful information on the stability of load they also aid phagocytic clearance due to the Mgl s
nanomaterials. It is thus, essential to alwaysestatsize and high diffusible nature. The interactiorAaNPs
whether the zeta potential of colloid NPs is pusif or  with serum proteins therefore alter the physiocloemi
negatively charged. Surface charges determinerth® p properties of the NP, which can intend affect uptakd
erties and functions of NPs. AuNPs have chargedaine target drug delivery processes [114]. Other facsorsh
tively or positively) surfaces which make them tygh as ionic strength (charges) of AUNPs can also affesir
reactive and receptive to surface modifications thue biocompatibility, thereby interfering with the bioletics
either cations or anions interaction, thus, crgatinnet of the cells, resulting in a reduction in cell \iléip
surface charge [40]. Based on surface charges, AuNH75,115].

can promote protein refolding through electrostatier-

actions between the exposed charged residues amthe However, citrate stabilized AuNPs toxicity test nggi
folded protein and the oppositely charged ligandishe  MTT assay have shown that 20 nm AuNPs at a concen-
AuNPs [110]. The overall high negative charge o th tration of 300 uM have no significant effect onl dal-
NP-protein complex prevents the proteins from ag@gfre man dermal fibroblast-fetal [74] which was similar
Biomed Res- India 2013 Volume 24 Issue 3 407



earlier findings by Connor et al [59]. In otherdpuri-

Yah

the Organization for Economic Cooperation and Devel

fied and citrate sterilized AuNPs have shown rathempment (OECD). Furthermore, studies gathered so far

milder cytotoxicity in A549 and NCIH441 cells asnco
pared to the particles with excess citrate. Thikcates
that functionalized side chain can interfere witle ac-
tivities of the AUNPs depending on the shape andse
charge [62,103]. This, therefore, indicates thathier
morein vitro studies on cell viability concerning charge
AuNPs properties are required to ascertain thaicity.

As discussed only a few studies of AUNPs toxicikiage
been conducted using transformed cells lines wrill a
limited number using primary cell cultures whiche ar
prototype systems closer to vivo studies. AUNPs sur-
face modifications (surface charges) have beendfdan
influence particle uptakén vitro. Some of the reports

show that AuNPs nanotoxicity studies and their theal
effects/implication are currently limited and infscient
to determine their health status to both human thed
environment. Therefore, moie vitro andin vivo AuNPs
and gold nanomaterials toxicity studies are higtdg-
ommended to augment the current limited controsérsi
data (whether toxic or no-toxic). This is due te flact
that gold nanotechnology is a relative new fieldl s
findings are budding. Also their easy aggregatiaris-
ing from the fragile capped stabilized surfaces enak
physical handling difficult thus limiting applicatfis.
Different sizes, shapes and surface ligands exditfér-
ent properties, therefore, when considering toxiteist-
ing for AUNPSs these factors should be taken intmant.

have shown thain vitro studies are the easiest toxicol- Furthermore, in depth research should be done dertn
ogy studies which can be used to better underdfasnd stand the chemical processes of size, shape ardror
molecular events underlying cellular effects [66} a face ligands because they exhibit different propert
shown in Table 1. However, Donaldson et al [66]ehav bothin vitro andin viva. In addition, before, AUNPs and
stressed thain vitro studies on cell culture alone are other NPs application are safely and widely applied

highly limited due to narrow range of biologicafeaits
which do not reflect the range of pathological efe

observedn vivo. Apart from that, the issue of NPs trans-

location into host tissues and their toxicokinetitsivo

is an important underlying principle in understami
nanotoxicology becausa vitro testing has shown less
convincing results. Apart from that there are fiewivo
studies on the biodistribution and biological eféeof
AuNPs that can serve as a basis for assessingalthh
impact due to surface charges. Furthermameyivo
methods are very important because they deterrhime t
whole body health effects in animals although thit
depend on the route (nasal, oral or dermal) of sxgo
(49). The biodistribution and biological processdter

biomedical systems or at best in clinical triatsfprma-
tion on their biocompatibility, bio-distribution dnbio-
degradability nature of Nanomaterials when appimd
biological systems. Also it will be of paramountpan-
tance to understand the long term persistent behavi
AuNPsin vivo before their applications iniological set-
tings.
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exposures are all tied down to the surface physiopqferences

chemical properties that make them chemically react
upon interaction with biological systems [93]. Tdfere,
the attributes of AuNPs and its coated surface gasar
must be examined with care to ascertain toxicities.

Conclusion and Challenges

In AuNPs and gold nanomaterials applications, tlwstm
important features stimulating their compositiomsaga
are sizes, shapes, surface area/porosity, surferges,
aggregation, surface modifications and host cedrac-
tions. We can say these unique properties of AUNBs
files are size-dependent and provide the challefgke-
termining their biological toxicities. However, farbet-
ter understanding of the acute, subchronic andnefiro
health effects of AuNPs toxicity, recommendatioris o
methods for testing of reproductive toxicity, gematity
or carcinogenicity effects have been made availalle
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