
 

400                                                                                                                               Biomed Res- India 2013 Volume 24 Issue 3                                                                                                 

Biomedical Research 2013; 24 (3): 400-413                                             ISSN 0970-938X 
http://www.biomedres.info 

 
The toxicity of Gold Nanoparticles in relation to their physiochemical 
properties. 
 
Clarence S. Yah 
 
Biochemistry and Toxicology Section, National Institute for Occupational Health (NIOH), Johannesburg 2000, South 
Africa. 
 

Abstract 
 

The rapid emergence of gold nanoparticles (AuNPs) technology holds great promise for fu-
ture applications due to their large volume specific surface areas with high diverse surface 
activities than bulk gold. These properties have made AuNPs of great importance in the de-
velopment of excellent nanoelectronic chips, promising vehicle for a wide range of biomedi-
cal and environmental applications. However, the huge impact arising from the physio-
chemical properties has given rise to new concerns for future health status. Currently, there 
is dearth information on AuNPs health effects and no regulatory safety and guidelines relat-
ing their properties to toxicities. This review, therefore, focuses on the potential toxicological 
aspect of AuNPs experienced so far and their interactions with biological systems. These can 
be applied as measures to improve their biomedical applications and risk assessment. How-
ever, assessing the safety issues of nanoparticles is quite challenging, because of the vast 
physiochemical properties that confound their biomedical and toxicological profiles. There-
fore more research with standardized NPs physicochemical properties is needed based on 
the different types of AuNPs to establish both in vitro and in vivo nanotoxicities. The estab-
lishment of each size with specific ligand properties will update the complex conflicting ideas 
emanating from the different AuNPs safety studies thereof. 
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Introduction  
 
Nanotechnology is the study of matter at the atomic mo-
lecular level with attention focused from 1 to 100 nm 
diameter nanoscale size [1-3], Other scientist envisage it 
in terms of its volume specific surface area (VSSA) 
greater than 60 m2/cm3, reflecting the critical importance 
of surface reactivity of nanomaterials rather than size [4]. 
Nanomaterials especially engineered gold nanomaterials, 
hold great promises for future applications due to it large 
VSSA thereby amplifying their electrical, chemical, me-
chanical, thermal and optical properties [5-6] that differ 
from bulk gold. Bulk gold is considered bio-inert, a 
property found only at the macroscopic level, but at 
nanoscale size, gold exhibit different properties due to its 
surface plasmon resonance excitation characteristics [7-
9]. Gold nanomaterials are currently used to enhance 
solar cells [10] and as liquid crystal that acts as flash  

 
memory devices [11]. They also have extensive potential 
biomedical applications in drug delivery, gene therapy, 
photothermal and radio-therapy, biosensing as well as 
contrast agents for cancer, diagnostic tracers, immobili-
zation of enzymes and cell imaging [1,6, 12-15]. Other 
uses include water and hydrogen purification, pollution 
control and as catalysts in carbon monoxide oxidation 
[16-19]. However, despite their huge potential benefits in 
the realm of environmental, biomedical and industrial 
applications, very little is known about the short and long 
term health effects in organisms and the environment. 
Reports show that synthesized NPs can circulate in the 
body for extended periods of time without being rejected 
by the body's immune system. All these behaviours are 
guided by the small size, shape and surface charges. This 
is of concern because during syntheses and applications, 
gold nanoparticles (AuNPs) of various sizes, shapes and 
surface charges are generated that may be of health risk. 
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Currently, there are very limited data and no safety and 
regulatory guidelines concerning the manufacture and 
application of nanomaterials. This review, therefore, fo-
cuses on the properties of gold nanomaterials and their 
interactions with biological systems. This will provide 
information on how AuNPs physicochemical properties, 
including those of attached functional groups influence 
cellular responses both in vitro and in vivo.  
 
Literature Search Information. 
Data for the current study were obtained from various 
indexing journal sites such as PubMed, Medline, Em-
base, Global Health, SCOPUS/Elsevier, Web of Science, 
Springer, Langmuir, Google Scholar, Scientific and peer-
reviewed reports, conference proceedings published in 
English. With the search terms as “gold nanoparticles, 
production, synthesis, biomimetic synthesis of gold na-
noparticles, toxicity, uses of gold nanoparticles, func-
tionalization of gold nanoparticles, types and shapes of 
gold nanoparticles, toxicity of spherical and rod nanopar-
ticles, toxicity of biomaterials of gold nanoparticles, gold 
nanoparticles ligands,  effect of gold nanoparticle aspect 
ratio on its toxicity’ toxicity of chemically synthesized 
gold nanoparticle, biologically  synthesized gold nano-
particles, effect of gold nanoparticles on cells. Others 
include toxicity of gold nanoparticles biconjugates, bio-
accumulation of aggregation and agglomeration of gold 
nanoparticles, cellular toxicity of gold nanoparticles’ 
 

Synthesis of Gold nanoparticles. 
In general, AuNPs are synthesized by the chemical re-
duction of chloroauric acid (HAuCl4) using various re-
ducing agents [20- 25]. The reduction process causes 
Au3+ to be reduced to neutral gold atoms which further 
become supersaturated and precipitated as more gold 
atoms aggregate to form sub-nanogold particles [19]. 
There are several methods involved in the syntheses of 
AuNPs, with HAuCl4 as the main source of the gold at-
oms [22]. These methods include the following modifica-
tions (1) The Turkevich method which produces mono-
dispersed spherical AuNPs suspended in water with cit-
rate ions acting as both reducing and capping agents [26]. 
(2) The Brust method that produces AuNPs in organic 
liquids which are normally not miscible with water [27]. 
(3) The Perrault method which uses hydroquinone to 
reduce HAuCl4 in an aqueous solution to produce AuNP 
seeds [28]. (4) The Martin method which generates “na-
ked” monodisperse AuNPs in water due to the reduction 
of HAuCl4 by sodium boron tetrathydride (NaBH4) [29]. 
(5) The Sonolysis process that produces AuNPs based on 
ultrasounds, reacting in an aqueous solution of HAuCl4 
in glucose using hydroxyl and sugar pyrolysis radicals as 
reducing agents [30]. (6) Other friendly and cheaper 

methods of AuNPs synthesis include the use of biologi-
cal agents such as microbial enzymes, plant phytochemi-
cals or microorganisms such as bacteria and yeast cells 
[31-32]. For example chickpea leaf reduces 0.1mM 
HAuCl4 solution to AuNPs at room temperature as well 
as capping the AuNPs from aggregating [33]. Es-
cherichia coli K12 have a fantastical behaviour to bio-
synthesis AuNPs at room temperature without the addi-
tion of growth media, pH adjustments or the inclusion of 
electron donors and stabilizing agents [34]. This biomi-
metic processes have revolutionized the nanotechnology 
field entirely.  
 
The role played by microbial systems in AuNPs synthe-
sis is vital because of their natural ability and mechanism 
to detoxified metallic gold ions through the reduction 
process either extracellularly or intracellularly as op-
posed to chemical synthesis of AuNPs (34-35]. Therefore 
are more environmentally friendly to exposed gold na-
nomaterial than chemical synthesis [34,36]. However, 
microbial and biological synthesis suffers from poor 
mono-dispersity, random aggregation, non-uniform 
shapes scale up as compared to chemical synthesis. [36]. 
Therefore production efficiency and specificity of 
AuNPs using biological processes is poor and improve-
ment in the design and production of AuNPs by biomi-
metic technique is needed.  
 
Currently, these methods are being modified to produce 
AuNPs of various sizes using various reducing agents 
[22,31, 34,37]. The synthesized AuNPs differ in several 
forms with some existing as branched nanocrystals of 
varying shapes i.e. monopod, bipod, tripod or tetrapod 
structures [38]. After production, these different forms 
are stabilized from aggregation and agglomeration with 
organic ligands such as peptides, proteins, fungus [39] 
and polymers such as polyethylene glycol (PEG) 
[23,40,41]. Furthermore, these different forms of ligands 
stabilized AuNPs can be modified by attaching other 
functional groups based on the application of choice 
[20,40].  
 

The size of AuNPs in terms of the proportion of width to 
height that is the aspect ratio (AR) in relation to toxicity 
is still debatable. Different AR of AuNPs gives different 
plasmon bands and wavelengths that equally exhibit dif-
ferent colours [42-43]. For example the study by Zhang et 
al [44] showed that various encapsulated AuNPs surface 
charges, sizes and shapes to human HEp-2 and canine 
MDCK cells exhibit different cytotoxic effects. However, 
the differences were exhibited by the shapes, where 
CTAB encapsulated gold nanorods (AuNRs) were rela-
tively higher in cytotoxicity than citrate stabilized gold 
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nano-spheres.  Within the AuNRs there was no signifi-
cant difference between the AuNRs different ARs [44] 
but increasing AR of AuNPs are difficult in cells uptake 
than those with lower AR [44-46]. Currently the clear-
ance findings of AuNPs AR by phagocytic cells are still 
under investigation because of the encompassed com-
plexity exhibited the physiochemical properties of both 
the AuNPs and their bio-conjugates cellularly. Studies by 
Qiu et al [47] have shown that cellular uptake is highly 
dependent on the AR and functional groups attached be-
cause ligands such as CTAB can equally enter cells with 
or without AuNPs, destroy mitochondria, and induce 
apoptosis [47]. The cationic PDDAC-coated AuNPs with 
an AR of 4 have been shown to possess both an insignifi-
cant toxicity with high cellular uptake, showing excellent 

photothermal therapeutic properties [47]. The method of 
AuNPs synthesis also affects toxicity [42-43], however 
AR in terms of cellular toxicity should be explained with 
caution because of the dearth information available in 
terms of AuNPs toxicological considerations. Therefore 
more systematic AuNPS toxicity studies are essential to 
decide the role of AR properties relative to cellular re-
sponses.  

 
Routes of exposures to Gold Nanoparticles.  
Exposure to AuNPs can occur during development, syn-
thesis, and applications by direct injection or ingestion 
into the system, and waste disposal [48-49]. Exposure 
can also arise from AuNP-composite bound to consumer 
products in markets, homes and outdoor activities [50]. 
Such exposes can account for their accumulation in the 
soil, water bodies and environment. Other main potential 
routes of exposure include inhalation, absorption through 
skin contact and release from implants [49, 51-52]. Fur-
thermore, the approval of AuNPs for various biomedical 
applications by the Food and Drug Administration 
(FDA) has led to increased applications as drug carriers, 
cancer therapy and biological applications [51, 53-55].    

 
Other mode of AuNPs exposures include airborne and 
surface materials adherence which sometimes are diffi-
cult to detect. They can therefore, persist and bio-
accumulate in such environment making them readily to 
translocate into the food chain thereby influencing both 
biotic and abiotic processes [56]. This enhances the up-
take of AuNPs by other environmental organisms such as 
algae and fish which can further be consumed by animals 
and humans. 
 
The effect of size and shape of Gold nanoparticles tox-
icity.  

Synthesized AuNPs come in a variety of sizes and shapes 
ranging from 1 nm to 500 nm: some as rods, spheres, 
tubes, wires, ribbons, plate, cubic, hexagonal, triangular, 
tetrapods, etc [38, 57]. The small size and their ‘needle-
like’ penetrating ability into cells have also made AuNPs 
excellent carriers in biomedical and molecular biology 
techniques [58]. This needle like feature as reported by 
De Jong et al [53] have ease the absorption, penetration, 
circulation and distribution of AuNPs in bio-systems as a 
size dependent factor. These findings were similar to 
those earlier reported by Connor et al [59] who found 
that AuNPs of approximately 18 nm in diameter could 
penetrate the cells without cell injury and toxicity. A 
study by Tsoli et al [60] also demonstrated that AuNPs of 
approximately 1 nm in diameter could penetrate the cell 
and nuclear membranes and attach to DNA without cell 
injury and cell death. The mechanism of entry into cells 
without cell injury has not been elucidated, but it seems 
the small nanosize plays a major role. The small size of 
the AuNPs therefore, facilitates their incorporation into 
biological systems for subsequent probing and modifica-
tion [61]. These unique features of AuNPs have led them 
to various chemical properties transducing into dissimilar 
cellular studies where some are reported either as toxic 
or non toxic. Some display size dependent toxicity due to 
the presence of coated surface ligands [5,62-63], while 
others because of their large surface area to volume ratio 
provide platforms for increase surface particle activity 
[54]. This therefore, contributes an easy flexible pathway 
of penetration and reactivity in biological system than 
bulk gold material.  
 
In terms of size, De Jong et al [53] found that 10 nm 
AuNP when administered to experimental animals can 
circulate more within 24h than other sizes. The mecha-
nism of this 10 nm AuNP widespread has not been eluci-
dated.  Apart from the fact that AuNPs circulations in the 
system are highly size dependent, earlier findings by 
Hauck et al [64] also showed that other sizes such 50 nm 
AuNPs when exposed within 30 min can be the most 
abundant cellular AuNPs in the a system.  
 

The interactions of AuNPs with biological systems are 
often related to their physiochemical characteristics 
which enable them to be internalized within cells, a 
situation which is not possible for larger particles. This is 
one of the reasons why AuNPs may be toxic than larger 
particles when compared on a mass dosage.  This 
emphasizes lies in the importance of their dimension, the 
large surface area to volume ratio which enables them 
applicable in biomedical systems [65,66]. 
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Table 1.  Summary of some selected in vitro gold nanoparticles cytotoxicity studies. 
 

 
Type of cell line 

 
Size of AuNP 

 
Dose  

 
Shape, Surface 
group 

Type of Test  
Biological effect 

 
\Ref 

Human leukemia cells 
(K562 leukemia cell line) 

≈4, 12 or 18 nm in diame-
ters 

25mM-250mM Citrate coated MTT assay Non toxic to K562 cells [59] 

Mytilus edulis 750 ppb gold-citrate 
nanoparticles 

1, ∼13 nm, 

 

1 mM Citrate coated Oxidative stress, 
Catalase activity, 
neutral red retention 
time assay, 2DE gels 

AuNPs induced oxidative 
Stress in bivalves, especially in 
digestive gland 

[73] 

Human dermal fibro-
blast-fetal  

10-50 nm 
 

10, 50, 100, 
200, 300µM 

Spherically citrate 
coated  

MTT 20 nm were non toxic even at 300 
µM 

[74] 

Healthy volunteer blood 
specimens 

30-50 nm 0.450 & 0.420 
mg/mL 

Colloids citrate-
stabilized  
 

2D PAGE, AFM, 
DLS, and TEM 

69 different proteins bound to the 
surface of AuNPs. No detectable 
platelet aggregation, Change in 
plasma coagulation time, and com-
plement activation. 

[75] 

The human umbilical 
vein endothelial 
(ECV-304) cells 

100 nm in diameter 20 µL Spherically bare 
and PCL-coated 
gold particles 

Microtubule staining The AuNPs were found in the en-
dosomes 
or lysosomes, cytoplasm, nucleic 
envelope, and  nucleus. Bare were 
slightly toxic while PCL coated had 
no effect 

[76] 

Human hepatocellular 
carcinoma HepG2 cells 

25±3.5 nm 1.0 nmol /L 
AuNP, 
1.2_mol/L 
Paclitaxel (T) 

Spherical particles MTT, quartz crystal 
microbalance (QCM) 
and flow cytometer 
assay 

AuNPs show low cytotocxicity but 
can disrupt adhesion and enhance 
apoptosis of HepG2 cell. Paclitaxel 
plus AuNP inhibits the growth of 
HepG2 cell more effectively than 
Paclitaxel alone 

[77] 

Human skin cell line 
HaCaT keratinocytes 

1.5 nm diameter 10 µl Spherically and  
nanorods CTAB 
coated  
 

MTT Spherical AuNPs were non toxic. 
AuNP Nanorods were highly toxic 
due to presence of CTAB coat layer 
used for the synthesis of nanorods. 

[78] 

Human prostate 
carcinoma PC-3 cells 

30-90 nm diameter 1.5nM Spherical 
AuNPs 

MTT and LDH assay No LDH leakage observed up to 34 
nM.  
Plain spherical 50 and 90 nm in 
diameter  induced the 
proliferation of PC cells 

[79] 

Pancreatic carcinoma 
cell line (EGFR-1, Panc-
1, and Cama-1) 

20-nm spherical 100-nmol Spherical L 
cetuximab-
conjugated 
AuNPs ( L C225-
AuNP) 

Flow cytometry Panc-1 had  viability of 46% ± 12%, 
Cama-1 cell had a viability of 92% ± 
2% 

[80] 

       
Optical cells 20 nm 2 mM protein-coated  Optical images AuNP was found to disrupt the mixed 

phospholipid/cholesterol monolayer 
[81] 

MRC-5 human lung 
fibroblasts 

20 nm in diameter 1nM FBS coated 
AuNPs 

Oxidative stress PCR 
array, Lipid hydrop-
eroxide assay, West-
ern blotting 

Oxidative damage, induced upregu-
lation of antioxidants, stress re-
sponse genes and protein expres-
sion 

[70] 

Mammary adenocarci-
noma (SKBR3), Human 
leukemia cells (HL60) 

Length= 44.8±2.8 and 
41.8± 3.3 
Width = 18.5 ±1.6 
and 11.7 ±1.4 respec-
tively 

20ul PEG coated 
nanorod  and 
PSS-coated 
nanorods 

MTS assay PEGylated particles did not induce 
toxicity to all the cells tested. PEGy-
lated gold nanorods also exhibited 
better dispersion stability, PSS-
coated rods tended to flocculate or 
cluster with induced toxicity 

[82] 

A549 cells, a human 
alveolar epithelial-like 
cell 

15 nm 200-2000 µg 
 

AuNPs Real-time PCR, 
ELISA 

No adverse effects from 
AuNPs were observed. No induction 
of oxidative 
stress markers and 
inflammatory cytokines 

[83] 

Human Sperm 9 nm 
AuNPs + 

500 µL   AuNPs media The AuNPs penetrated the sperm 
cells head and tails. 25% of the 
sperm became non motile as com-
pared to 95% control  

[84] 
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Table 2.  Summary of some selected in vivo gold nanoparticles toxicity studies. 
 
Type 
exposed 
organism  

Size of AuNP Route of exposure Dose Surface coating Test Biological Effect Ref 

Male WU 
Wistar-
derived rats 

10, 50, 100 
and 250 nm, 

Intravenously One ml Spherical AuNPs Organ Index The AUNPs were found in the liver 
and spleen. 10 nm was present in 
all blood, liver, spleen, kidney, 
testis, thymus, heart, lung and 
brain. Larger particles were only 
detected in blood, liver and spleen. 

[53] 

Female 
mice 

2, 40 and 100 
nm  

Intratracheal 1.4-1.6 
mg/kg 

Negatively  charged 
monodisperse and 
spherical AuNPs- 

Organ index 
(liver) 

AuNPs found in the liver and mac-
rophages 

[88] 

Mice 13.5 nm in 
diameter 

 Oral, 
intraperitoneal 
routes and the tail 
vein intravenous 
injection 

137.5–2200 
µg/kg  

Spherically and 
citrate-coated 

Animal sur-
vival, weight, 
hematology, 
morphology, 
and 
organ index 

High AuNPs induced decrease in 
body weight, red blood cells. No 
effect at low level. Oral admin 
caused a significant decrease in 
body weight, spleen index, and red 
blood cells. 

[14] 

BALB/C 
Mice 

Naked 3 to 
100 nm 

Intraperitoneal  8 
mg/kg/wee
k 

Naked colloids 
AuNPs 

Physical and 
behavioral 
examination.  

AuNPs of 8,12,17, 37 nm induced 
fatigue,loss of appetite, change of 
fur color, and weight loss. Most 
died within 21 days. 3-5 nm did not 
induce sickness.  

[68] 

Male Wis-
tar rats 

20 nm Tail-vein intrave-
nous injection 

0.2-mL 
(0.01 
mg/kg) 

AuNPs Organ index AuNPs accumulated and persisted 
in the liver and spleen than other 
organs. Many up and down regu-
lated genes were expressed. 

[37] 

Male Mice 
C57/BL6 

12.5  ± 1.7 
nm   

Intraperitoneal 40–400 
µg/kg/day 

Colloids citrate 
coated AuNPs  

Animal sur-
vival, weight, 
hematology, 
morphology, 
and 
organ index 

The AuNPs were able to cross the 
brain barrier and accumulate in 
neural tissues but No toxicity was 
evident. But there was uptake in the 
spleen, kidney and liver 

[87] 

Rat 5 nm  Tail vein intrave-
nous and 
intratracheal 

570–870 
µg/kg 

PEG Coated AuNPs  Organ index PEG Au NPs accumulated mostly 
in liver and spleen. 

[90] 

Male CD1 
mice 

15±1 nm  Tail vein intrave-
nous  injection, 
scanned with the 
eXplore Optix to 
observe the distri-
bution 
pattern (brain up-
take) 

150–200 
µL 

Human serum albu-
min (HSA), 
 polyallylamine 
hydrochloride, poly-
styrene-4-sulfonate 
coated AuNPs 

Organ index Functionalized AuNPs accumulate 
in the hippocampus, 
thalamus, hypothalamus, and the 
cerebral cortex. 

[91] 

BALBc/c 
AnNHsd 
female 
mice 

2.5±1.0nm Subcutaneous 
injection 

200µl PEG-TMPC coated Organ index 100% survival at all the different 
concentrations of PEG-TMPC and 
TMPC. Particles present in the 
organs  but TMPC is not suitable 
for in vivo studies 

[92] 

 
Other studies of size-dependent cytotoxicity have been 
demonstrated in triphenylphosphine stabilised AuNPs 
using four cell lines such as tissue fibroblasts (L929), 
epithelial cells (HeLa), macrophages (J774A1) and 
melanoma cells (SK-Mel-28) [67].  Data obtained from 
these studies shown that cellular response is size depend-
ent. For example 1.4 nm AuNP was observed as the most 
toxic responsible for rapid cell death by necrosis [67] as 
compare to 15 nm which was shown to be non-toxic 
[68]. This suggests that “larger” NPs are non-toxic in 
vitro. Furthermore,  other in vitro studies on AuNPs of 

20 and 100 nm in diameters have been shown to have no 
apparent  effect on viability of human retina microvascu-
lar endothelial cells [69]. Although some studies have 
shown AuNPs not having an effect on cell viability, it is 
important to note that genotoxicity can occur without 
cytotoxicity and may result in genetic damage and tran-
scription alterations which are not phenotypically ex-
pressed. A study on the effect of 5nm to 20 nm AuNPs 
on MRC-5 human fetal lung fibroblast cells have showed 
no influence on the viability of MRC-5 treated cells [70-
71]. However, cell proliferation was inhibited which was 
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linked to downregulation of cell cycle genes. More so, 
oxidative DNA damage has been observed in conjunc-
tion with a downregulation of DNA repairs [71]. Fur-
thermore, other reports have revealed that AuNPs of 2-4 
nm, 5-7 nm and 20-40 nm are non-toxic to MRC-5 cells 
however when they were ≥ 10 ppm induced apoptosis 
and up-regulated the expressions of pro-inflammatory 
genes interlukin-1 (IL-1), interlukin-6 (IL-6) and tumor 
necrosis factor (TNF-alpha) [72].  Table 1 summaries 
some AuNPs in vitro toxicity studies that examined size, 
type of cell culture and their biological effects.  
 
The effect of AuNPs shows that the smaller the AuNP 
the higher the probability of it to cause toxicity as well as 
bind easily on cellular surfaces. For example 1.4 nm 
AuNP in diameter was found to bind with DNA and 
affect genes (mutation) as comparable to their larger 
ccounterparts.  
 
Some studies have shown that AuNPs between 30 and 
110 nm when exposed to rats for up to 15 days, can ac-
cumulate in the lungs, olfactory bulb, spleen, oesopha-
gus, tongue, kidney, aorta, heart, septum and blood. This 
was quantified by means of inductively coupled plasma 
mass spectrometry (ICP-MS) [85]. The results obtained  
so far were similar to those earlier reported by Takenaka 
et al [86] where engineered gold nanomaterials of 5-8 nm 
were found retained in rat’s lungs before translocating 
into other tissues. These were also in agreement with 
those reported by Lasagna-Reeves et al [87] who used 
ICP-MS and GF-AAS to determine a significant amount 
of AuNPs in the liver, blood, brain, kidney, spleen, and 
lungs. Sadauskas et al [88] also demonstrated the amount 
of 2, 40 and 100 nm AuNPs in mice with similar tools 
with the liver as site of huge bioaccumulation, with only 
a small fraction translocating into the blood circulation 
and macrophage endosomes. The 2 nm AuNPs were fur-
ther found to be the most translocated particles within the 
liver cells. The in vivo behavioural activities of these 
particles were due to their large surface area per unit 
mass. This shows that AuNPs bio-distribution vary with 
different sizes due to the availability of atoms ready to 
take part in various chemical reactions.  
 
The mechanisms of biodistribution of AuNPs so far de-
scribed are via endocytotic-exocytotic activity and to a 
lesser extend by paracellular transport (transport of 
molecules around cells and via tight junctions of epithe-
lial cells) [88-89]. Such mechanisms are due to differ-
ences in the surface properties of the AuNPs, the type of 
animals used and the route of exposures. Table 2 summa-
ries some of the in vivo AuNPs toxicity studies which 
examine the size, route of exposure and biological effect.  

 
Gosens et al [93] believes that single AuNPs can pose 
greater health effects than their agglomerates and aggre-
gates counter parts. Because of the agglomerates and 
aggregates relative larger sizes, they are restricted from 
translocating easily across membranes as compared to 
single nanogold particles. Although, when Gosens et al 
[93] intratracheally instilled AuNPs agglomerates and 
spherical single dose of 1.6 mg/kg AuNPs (50 nm or 250 
nm) into rat lungs, both particles gave mild pulmonary 
inflammation at the same dosage. Meanwhile, earlier 
reports by Mühlfeld et al [89] and Sadauskas et al [88] 
showed that when AuNPs are inhaled and deposited in 
the lungs, only a small fraction (both single and agglom-
erates) can be phagocytozed with a small part translo-
cated across the alveolar epithelium. Nevetheless, the 
nanosize factor is a major significant feature in determin-
ing the deposition, translocation, distribution and fate of 
AuNPs. These facilitate the crossing of the blood brain 
barrier by AuNPs, which accumulate in neural tissues as 
well as in the placenta and fetus [87, 94-95]. Earlier re-
ports by Takahashi and Matsuoka [94] reported the up-
take of colloidal AuNPs of 5 and 30 nm after maternal 
intravenous injection in rats. Other studies by Lee et al 
[96] and Myllynen et al [95] have also showed the inter-
nalization of 10-30 nm PEGlyated AuNPs in the placen-
tal cells which are comparable to immunoglobulins that 
cross the placenta (IgG). The findings from these studies 
also showed AuNPs with sizes up to 240 nm crossing the 
human placental barrier without affecting the viability of 
the placental explants. Other findings by Sadauskas et al 
[88], however, showed that AuNPs of 2 and 4 nm when 
injected intravenously or intraperitoneally respectively 
did not seem to penetrate either the placenta barrier or 
the blood - brain barrier but were found in the macro-
phages and Kupffer liver cells. Information from litera-
ture envisages size as the most significant physical prop-
erty responsible for inducing AuNP toxicities [97].  
 
Furthermore, the influence of AuNP toxicity has also 
been shown to vary due to the different particle shapes. 
Among the shapes, rods shaped AuNPs have been re-
ported to demonstrate more toxicity than their spherical 
counterparts. Research on gold nanorods has shown that 
they are more toxic to human keratinocyte cells (HaCaT) 
as compared to spherical gold nanomaterials [62]. The 
mechanisms of less toxicity of spherical AuNPs com-
pared to nanorods are yet to be demonstrated; however, 
they are all engulfed on their surface properties. Studies 
investigating the cytotoxicity and cellular uptake of gold 
nanorods on human breast adenocarcinoma cell line 
(MCF- 7) also reported loss of mitochondrial integrity in 
cells treated with nanorods [47] as compared to spherical 
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shapes [77]. Li et al [70] also showed that naked AuNPs 
(20 nm in diameter) when taken up by MRC-5 human 
lung fibroblast in vitro can induce autophagy (degrada-
tion of a cell's own components via lysosomal machin-
ery) concomitant with oxidative stress, stimulating up-
regulation of antioxidants, stress response genes and pro-
tein expression. Other studies have also shown nanorods 
toxicity to be highly associated with surface layer used 
for the synthesis of nanorods such as CTAB [97]. There-
fore the association of surface stabilizers and functional 
ligands chemistry or composition should not be over-
looked. Also as the application of AuNPs are increasing 
in medicine to diagnose and treat diseases detailed data 
on the possible toxic effect of various sizes, shapes and 
ligands of the AuNPs are needed because the current 
available information are limited and inconsistent.  
 
The effect of ligands and bio-conjugates on the toxicity 
AuNPs. 
In nanotechnology, ligands are functional groups at-
tached onto the surfaces of NPs thereby modifying their 
surface activities. The functional groups are usually at-
tached either covalently or non-covalently onto the NPs 
by chemical processes (98-99).  Place-exchange reaction 
is the most versatile and widely used method for intro-
ducing functional groups to AuNPs (57,92).  The widely 
attached functional groups onto AuNPs are highly avail-
able for further conjugation (57). Polyethylene glycol 
(PEG), poly-L- lysine (PLL), poly- D- L- lactic-co- gly-
colic acid (PLGA) and their co- polymers have been suc-
cessfully applied to develop novel biocompatible AuNPs 
[14]. Of these, PEG has gained popularity as a modifying 
agent due to its amphiphilic and solubility characteristics 
[12]. 
 
Hetero-functionalized PEGylated mono protected clus-
ters (MPCs) with a thiol group on one terminal and a 
reactive functional group on the other have become pop-
ular for AuNP applications [100]. Preferred end groups 
for hetero- functional PEG AuNPs are maleimide, vinyl 
sulfones, pyridyl disulfide, amine, carboxylic acids, hy-
droxyl, methoxy and esters [101]  
 
Functionalization of AuNPs increases the circulation 
period of the NPs in the blood stream [12].  A study in-
vestigating the bio- distribution of PEG modified and 
non- modified gold nanorods in mice reported a larger 
percentage of modified AuNPs in the blood in contrast to 
unmodified particles over the same time period [102]. 
Other data have shown that surface modified AuNPs 
have the ability to reduce cellular toxicity associated with 
chemical surfactants used during the synthesis of the NPs 

[42, 92]. Takahashi et al [94] reported the modifying of 
gold nanorods with phosphatidylcholine to reduce cyto-
toxicity associated with the CTAB molecule on the nano-
rods surfaces.  Another study by Goodman et al [103] 
investigated the hazardous effect of AuNPs modified 
with an amine and carboxyl groups on Cos-1 cells, red 
blood cells, and E. coli cells. Their results showed that 
anionic AuNPs species are non-toxic to cells, whereas 
cationic species can cause moderate toxicity in all cells 
lines. The authors suggested that toxicity was related to 
the interaction of a positive charge on the ammonium 
species with a negative charge on the lipid bilayer of cell 
membranes. 
 
Other findings reported by et al [67] showed that 1.4 nm 
AuNPs in diameter capped with triphenylphosphine 
monosulfonate can cause necrosis via the oxidative stress 
and mitochondrial damage, while Gu et al [104] found 
that 3.7 nm AuNPs in diameter modified poly(ethylene 
glycol) (PEG) were non toxic when internalized in the 
cell nucleus of human cervical cancer (HeLa). This 
shows that functionalized molecules play a significant 
role in AuNPs toxicity.  

 
Some findings showed that functionalized AuNPs are not 
cytotoxic but can cause a slight reduction in the reactive 
oxygen and nitrite species [59, 63,105]. However, ac-
cording to the findings by Bar-Ilan et al and Pan et al 
[61,67], functionalized AuNPs with a concentration of 
62.5 mg mL_1 of triphenylphosphine monosulfonate 
(TPPMS) utilized as ligand is non-toxic, whereas con-
centration higher than 625 mg mL_1 can result in mor-
phological malformations of zebrafish embroyos. Earlier 
studies by Tsoli et al [60] and Pan et al [67] revealed that 
1.4 nm AuNPs functionalized with TPPMS are able to 
bind on dsDNA major groove and disrupt cellular func-
tion. However, their findings failed to indicate whether 
the effect was specific to gold 1.4 nm or to all AuNPs 
coated with TPPMS. In other related study it was found 
that the toxicity and biodistribution of PEG-coated 
AuNPs 20 nm with TA-terminated PEG5000 has more 
stability with lower toxicity than  40 or 80 nm AuNPs 
functionalized with TA-terminated PEG5000 [90]. It is 
therefore, evident that functional groups on AuNPs affect 
toxicity. An investigation into the effect of size and the 
presence or absence of sodium citrate residues on the 
cytoxicity and uptake of AuNPs in alveolar type-II cells 
has showed the reduction in cell viability due to sodium 
citrate residues on AuNPs [52].  
 
However, when Boca et al [106] examined the cytotoxic 
effect of chitosan capped-AuNPs on chinese hamster 
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ovary cells in vitro, the conjugated particles were found 
to tranverse the cell membrane by endocytosis; and using 
dark field microscopy imaging, it revealed ≥ 85% of the 
cells were viable even after long period of exposure. 
This, therefore, shows that chitosan-conjugated AuNPs 
can be deemed to have great potential in cellular imaging 
or photothermal therapy as they are non-toxic compared 
to other coated AuNPs.  
 
Oberdorster et al [107] earlier showed that, partial sur-
face composition coupled with size of the NP is account-
able for the observed toxic effects. However, other stud-
ies by Bar-Ilan et al [61] demostrated that zebra-fish em-
bryo toxicity depends more on its surface chemical com-
position rather than on particle size.  This implies that 
surface functionalization or coatings of AuNPs has a 
very huge impact on the toxicity of nanomaterials.   
 
Furthermore, Cho et al [108] showed that PEG-coated 13 
nm AuNPs when injected intravenously in to BALB/C 
mice can elicit an immune response and apoptosis with 
further accumulation in the liver and spleen after a week 
of administration. The findings of Wang et al [97] in-
volving the intravenously injected CTAB- capped gold 
nanorods into rats circulated in blood as the main route 
of bio-distribution.  Similarly, Hirn et al [109] also found 
the accumulation of AuNPs mainly in the liver, spleen 
and to a lesser extend in the kidney, brain, muscle and 
bone. Those found in the spleen and Kupffer cells lym-
phocytes form aggregates within the lysosomes [97]. The 
formation of aggregation scenario can result into com-
plex biological system of an unknown response and tox-
icity in vivo. This indicates the need to study the biologi-
cal effect of NPs in biological systems.  
The effects of surface charge on the toxicity of gold 
nanoparticles. 
Surface charge which is measured by zeta potential is 
one of the major physical characteristic influencing 
AuNPs toxicity [108]. The application of zeta potential 
provides useful information on the stability of colloid 
nanomaterials. It is thus, essential to always state 
whether the zeta potential of colloid NPs is positively or 
negatively charged. Surface charges determine the prop-
erties and functions of NPs. AuNPs have charged (nega-
tively or positively) surfaces which make them highly 
reactive and receptive to surface modifications due to 
either cations or anions interaction, thus, creating a net 
surface charge [40]. Based on surface charges, AuNPs 
can promote protein refolding through electrostatic inter-
actions between the exposed charged residues on the un 
folded protein and the oppositely charged ligands on the 
AuNPs [110]. The overall high negative charge of the 
NP-protein complex prevents the proteins from aggregat-

ing; the NP thereby promotes refolding which can be 
used to refold proteins in a chemical denatured state 
[110].  
 
It is important to note that modifications of NP surfaces 
may cause undesirable ionic interactions with biological 
systems [73], due to changes in surface charges. Many 
AuNPs are stabilized with surface charges to prevent 
aggregation via electrostatic repulsion [42], playing a 
significant role in toxicity of the NP. Aggregated AuNPs 
have modified surface charges which intend influence 
changes of cellular environment and thus altering the 
cellular behaviour and cellular toxicity [79]. 
 
Apart from earlier reports that cationic are moderately 
toxic than anionic AuNPs [103], other reports by 
Schaeublin et al [111] have shown that both cationic and 
anionic AuNPs are toxic to cells. Schaeublin et al [111] 
further showed that both positively and negatively 
charged AuNPs can alter the mitochondrial membrane 
potential resulting into oxidative stress. The oxidative 
stress according to current findings by Oikawa et al [112] 
enhances the production of reactive oxygen species, var-
ious immunologic stimuli, inflammation, some human 
diseases such as neurodegenerative disorders, and 
cancers. Apart from these the anionic and cationic sur-
face charges of AuNPs can stimulate lymphoid cells 
phagocytosis to an extend greater than neutral AuNPs 
[79]. Therefore, the wider the charge differences on the 
AuNP surfaces, the greater the opportunity for it phago-
cytic activities and the inflammatory responses.  
 
Other studies have shown that surfaces charges of NPs 
enhance their uptake into cells. For example findings by 
Chithrani et al [62] using incubated citric acid coated 
AuNPs have shown that NPs  surface charges can poten-
tial influence their uptake by mammalian cell line HeLa.  
Furthermore, He et al [113] also found that although the 
surface charges play a significant role in phygocytoses 
they also aid phagocytic clearance due to the NPs small 
size and high diffusible nature. The interaction of AuNPs 
with serum proteins therefore alter the physiochemical 
properties of the NP, which can intend affect uptake and 
target drug delivery processes [114]. Other factors such 
as ionic strength (charges) of AuNPs can also affect their 
biocompatibility, thereby interfering with the biokinetics 
of the cells, resulting in a reduction in cell viability 
[75,115].  
 
However, citrate stabilized AuNPs toxicity test using 
MTT assay have shown that 20 nm AuNPs at a concen-
tration of 300 µM have no significant effect on cell hu-
man dermal fibroblast-fetal [74] which was similar to 
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earlier findings by Connor et al [59]. In other study puri-
fied and citrate sterilized AuNPs have shown rather 
milder cytotoxicity in A549 and NCIH441 cells as com-
pared to the particles with excess citrate. This indicates 
that functionalized side chain can interfere with the ac-
tivities of the AuNPs depending on the shape and surface 
charge [62,103]. This, therefore, indicates that further 
more in vitro studies on cell viability concerning charge 
AuNPs properties are required to ascertain their toxicity.  
 
As discussed only a few studies of AuNPs toxicities have 
been conducted using transformed cells lines with only a 
limited number using primary cell cultures which are 
prototype systems closer to in vivo studies. AuNPs sur-
face modifications (surface charges) have been found to 
influence particle uptake in vitro.  Some of the reports 
have shown that in vitro studies are the easiest toxicol-
ogy studies which can be used to better understand the 
molecular events underlying cellular effects [66] as 
shown in Table 1. However, Donaldson et al [66] have 
stressed that in vitro studies on cell culture alone are 
highly limited due to narrow range of biological effects 
which do not reflect the range of pathological effects 
observed in vivo.  Apart from that, the issue of NPs trans-
location into host tissues and their toxicokinetics in vivo 
is an important underlying principle in understanding 
nanotoxicology because in vitro testing has shown less 
convincing results. Apart from that there are few in vivo 
studies on the biodistribution and biological effects of 
AuNPs that can serve as a basis for assessing its health 
impact due to surface charges. Furthermore, in vivo-
methods are very important because they determine the 
whole body health effects in animals although this will 
depend on the route (nasal, oral or dermal) of exposure 
(49). The biodistribution and biological processes after 
exposures are all tied down to the surface physio-
chemical properties that make them chemically reactive 
upon interaction with biological systems [93]. Therefore, 
the attributes of AuNPs and its coated surface charges 
must be examined with care to ascertain toxicities.  
 
Conclusion and Challenges 
In AuNPs and gold nanomaterials applications, the most 
important features stimulating their compositions array 
are sizes, shapes, surface area/porosity, surface charges, 
aggregation, surface modifications and host cell interac-
tions. We can say these unique properties of AuNPs pro-
files are size-dependent and provide the challenge of de-
termining their biological toxicities. However, for a bet-
ter understanding of the acute, subchronic and chronic 
health effects of AuNPs toxicity, recommendations of 
methods for testing of reproductive toxicity, genotoxicity 
or carcinogenicity effects have been made available by 

the Organization for Economic Cooperation and Devel-
opment (OECD). Furthermore, studies gathered so far 
show that AuNPs nanotoxicity studies and their health 
effects/implication are currently limited and insufficient 
to determine their health status to both human and the 
environment. Therefore, more in vitro and in vivo AuNPs 
and gold nanomaterials toxicity studies are highly rec-
ommended to augment the current limited controversial 
data (whether toxic or no-toxic). This is due to the fact 
that gold nanotechnology is a relative new field and its 
findings are budding. Also their easy aggregations aris-
ing from the fragile capped stabilized surfaces make 
physical handling difficult thus limiting applications. 
Different sizes, shapes and surface ligands exhibit differ-
ent properties, therefore, when considering toxicity test-
ing for AuNPs these factors should be taken into account. 
Furthermore, in depth research should be done to under-
stand the chemical processes of size, shape and or sur-
face ligands because they exhibit different properties 
both in vitro and in vivo. In addition, before, AuNPs and 
other NPs application are safely and widely applied in 
biomedical systems or at best in clinical trials, informa-
tion on their biocompatibility, bio-distribution and bio-
degradability nature of Nanomaterials when applied into 
biological systems. Also it will be of paramount impor-
tance to understand the long term persistent behavior of 
AuNPs in vivo before their applications in biological set-
tings.  
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