
The roles of long non-coding RNAs in biological properties of human glioma.

Jianxin Jiang1, Xiaoxin Liu1, Jun Lu1, Guangzhong Gao1, Zhiyang Sun2*

1Department of Neurosurgery, Taizhou People’s Hospital, Jiangsu, PR China
2Department of Neurosurgery, East Hospital, Shanghai, PR China

Abstract

Glioma is the most common and aggressive primary adult brain tumor. The median survival time of the
glioma patients is less than 15 months under conventional treatments. The etiology of the glioma is still
unknown. The emerging evidence suggested that many factors contributed to human glioma formation,
metastasis, relapse, and resistant to radiation, and chemotherapy/therapies resistance. Recent reports
showed that the long non-coding RNAs (lncRNAs) had multifunctional roles in regulating human glioma
tumorogenesis processes through both transcriptional and post-transcriptional regulation of gene
expression. In this review, the related lncRNAs which have been reported were summarized, the
functions of the lncRNAs which acted as oncogenes or tumor suppressor genes during human glioma
development was discussed, and the current mechanisms of lncRNAs was elaborated in a variety of
biological properties of human glioma.
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Introduction
Glioma is the most common and aggressive primary brain
tumor in adult. Gliomas make up about 30% of all brain and
central nervous system tumors and 80% of all malignant brain
tumors. The exact causes of gliomas are still not known.
Different oncogenes work in the development of gliomas.
Different cancer genes have synergistic in the development of
glioma. Treatment for brain gliomas depends on the location,
cell type, and grade of malignancy. So far, there is no way to
cure gliomas. Surgery, radiation therapy, and chemotherapy are
combined together to treat the human gliomas. The median
survival time of the glioma patients is less than 15 months
under conventional treatments. The etiology of the glioma is
unknown till now [1-4]. According to aggressiveness, the
World Health Organization (WHO) classified them into Grades
1 and 2 or Low-Grade Gliomas (LGG), and Grades 3 and 4 or
High-Grade Gliomas (HGG). Human glioma is characterized
by a wide clinical and histological heterogeneity, because
35-40% of them have epigenetic modifications as the
underlying mechanism driving malignancy [5]. Clinicians and
scientists all over the world can’t predict the clinical evolution
of each patient who is diagnosed with this human glioma till
now.

The global human genome project which is started at 1990’s is
expected to understand the human Genetic information
especially genes information which encodes functional
proteins. Finally, only 20000 protein coding genes were
discovered [6-8]. More than 98% of eukaryotic transcriptomes
compose of non-coding RNAs with no functional protein-

coding capacity [9-11]. Investigators categorized the non-
coding RNAs (ncRNAs) as short ncRNAs, mid-size ncRNAs,
and long non-coding RNAs (lncRNAs) by their lengths.
LncRNA is a large class of ncRNA which have a length of
more than 200 nucleotides (nt) and plays important roles in lots
of physiological and pathological processes [12]. LncRNAs
have many roles in regulating embryonic pluripotency,
differentiation, development and various diseases, especially in
cancers [13-16]. Recently, many evidences demonstrated that
lncRNAs take part in many signalling pathways related to
human glioma progression, invasion, metastasis, and drug-
resistance [17-19]. In most reviews, the relationship of the
lncRNAs and glioma has been analysed. It is known that
expression of different types of lncRNAs in different
pathological grade of gliomas, or even in the same pathological
grade of gliomas expression is not the same. The recurrence
rate and survival time of the patients with the same
pathological grade were also different. Whether this difference
is related to the expression of different lncRNAs is still unclear.
In this review, the updated research data will be focused and
the current knowledge of lncRNAs contributing to these
processes in human glioma occurrence and development will
be summarized.

The Function of the IncRNAs
In human genome, no more than 2% of human genome
sequence can be transcribed into protein. Most of the human
genome sequence can’t be transcribed into functional protein.
They are transcribed into non-coding RNA (ncRNAs), which
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include short ncRNA, mid-size ncRNA, and lncRNA. LncRNAs
may be classified according to their mode of action and
functions in cells such as, 1) mediators on signalling pathway,
2) serving as molecular decoys, 3) work as molecular guides
for the ribonucleoprotein complexes to certain specific
chromatin site, and also have 4) scaffold function for the
proper complex formation [8,15]. According to GENCODE
gene annotation V22, there are 15,900 human lncRNA genes
that can produce 27,670 long non-coding RNA transcripts.
However, there are only 9,894 small non-coding RNAs genes
in the human genome [20]. The expression of lncRNAs has
tissue specificity. It has been suggested through multiple
studies that the brain and central nervous system express the
greatest amount of lncRNAs of any tissue type. They have
important roles in regulating transcriptional and non-
transcriptional processes [21].

X-inactive specific transcript (Xist) which is the first lncRNA
was discovered in 1990 by Brown et al. first. They found Xist
as a novel protein non-coding RNA only expressed by inactive
X-chromosomes only in female mammals in their study. It was
revealed that Xist can silence one of X-chromosome activation
by coating one X-chromosome leading to its epigenetic
function [22]. Later, many lncRNAs were described
successively as a sort of important regulators.

The nucleus is a highly structured cellular compartment. The
chromatin-associated processes such as DNA replication,
transcription, RNA processing and RNA export were organized
and regulated in nucleus. Recent studies showed that lncRNAs
had the complex secondary structures and played roles in these
processes including mRNA splicing, nuclear localization, cell
survival, cell cycle, and migration [19,21,23-26]. Many studies
have indicated that lncRNAs have roles in various cancers as
prognostic markers. For example, HOTAIR has a role in
colorectal cancer and MALAT1 has a role in non-small cell
lung cancer [27-29]. Many reports showed they also had roles
in breast cancer. In high-grade glioma HOTAIR is
overexpressed whose upregulation is predictive of poor
prognosis. In addition, HOTAIR has an important role in cell
cycle progression, but the mechanism is not clear till now
[29,30].

In different human glioma subtypes (Astrocytoma, less
dendritic cell tumor, tumor of the ventricular canal, and
glioblastoma) lncRNAs are differentially expressed and some
lncRNAs are associated with biological characteristics of
human glioma in the same subtype. In human glioma several
lncRNAs may possibly play a vital role in cancer occurrence,
metastasis, drug resistance and recurrence [8,13,16]. Many
studies have shown that inhibiting or overexpression of
specific lncRNAs can have an effect on the process of human
glioma progression, showing a potential therapeutic application
of lncRNAs in human glioma. Some specially lncRNA may not
only affect the biologic processes of human glioma, but also
modulate the function of the vascular endothelial cells which is
associated with the Blood-Tumor Barrier (BTB) that
contributes to the failure of conventional chemotherapy by
restricting sufficient drug molecules delivery to tumor tissues

[18]. If we know the mechanism how the lncRNA influence the
BTB, we can find a new method to improve the prognosis of
glioma. The purpose of this review was to summarize the
involvement of different lncRNAs in the human glioma
aggression, metastasis, and chemoradiotherapy resistance
processes.

lncRNAs in Human Glioma Bioprocesses
Many studies have shown lncRNAs involving in occurrence
and development of human glioma as tumorigenic factors or
tumor suppressor. These lncRNAs have the aberrant expression
level in malignant glioma compared to normal tissues.
LncRNAs can work as molecular signalling mediators which
modulate a certain set of gene expression [12]. LncRNAs that
serve as molecular decoys can take proteins or RNAs away
from a specific location [31]. LncRNAs can take part in the
assembly of protein complexes. LncRNAs work as the
molecular guides through locating certain ribonucleoprotein
complexes to a specific target site on the chromatin [17].

H19, a 2.3 kb carcinogenic lncRNA which locates on human
chromosome 11p15.5, doesn’t contain any known open reading
frames [32,33]. H19 is located on the downstream of Insulin-
like Growth Factor 2 (IGF-2). They share the same imprinting
mechanism. H19 has been well studied in many different
cancers, including bladder, breast, colon, glioma, pancreatic,
liver, and ovarian cancers [34-39]. Recent study shows that C-
Myc regulates these two genes (H19 and IGF-2) independently
and does not affect H19 imprinting. C-Myc binds to
evolutionarily conserved E-boxes near the imprinting control
region to facilitate histone acetylation and transcriptional
initiation of the H19 promoter. C-Myc significantly induces the
expression of the H19 noncoding RNA in diverse cell types,
including glioblastoma. C-Myc up-regulates H19, down-
regulates IGF2 transcripts and does not affect imprinting of the
H19/IGF2 locus [40]. In vivo assays overexpression of H19
promotes tumor development after subcutaneous injection of
H19-recombined cells into SCID mice [34].

Similar to H19, non-coding RNA Hox transcript antisense
intergenic RNA (HOTAIR) has been characterized as a
negative prognostic factor in breast and colon cancer patients.
In Zhang’s study, it was found that HOTAIR expression was
closely associated with glioma grade and poor prognosis [41].
A study showed that low expression of HOTAIR can inhibit
cell invasion, decrease cell proliferation and alter cell cycle
progression. Down-regulation of HOTAIR can induce cell cycle
G0/G1 arrest [42]. This suggested that HOTAIR played an
important role in glioma molecular classification and may
serve as a novel therapeutic target for classical and
mesenchymal glioma subtypes. Xue et al. found that HOTAIR
was the target of miR-326 which mediated the tumor-
suppressive effects of HOTAIR knockdown on glioma cell lines
[43]. Overexpressing of miR-326 reduced the FGF1 expression
which played an oncogenic role in glioma by activating
PI3K/AKT and MEK 1/2 pathways. They got the same
findings in vivo [44-46]. These results provided a new potential
therapeutic strategy for glioma treatment. The HOTAIR-
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miR-326-FGF1 axis might represent a promising therapeutic
strategy for the treatment of human glioma. A research by
Zhang et al. demonstrated that in GBM cells, HOTAIR
regulated cell cycle progression predominantly via the
HOTAIR 5’ domain-PRC2 axis, which was EZH2-dependent.
HOTAIR 5’domain-PRC2 is a new regulatory axis that
modulates cell cycle progression in GBM cells. Previous
studies have indicated that EZH2 was overexpressed in glioma
stem-like cells and adult glioblastoma patient samples
[28,47,48].

In order to know whether other lncRNAs influence the profiling
of human glioma, Kraus finished a research this is to find
lncRNAs that have roles in human glioma [49]. They found that
not only H19 and but also HOXA6as, Zfhx2as and BC200 are
suitable as normalisers in glioma and normal brain. These
lncRNAs are applicable for the accurate normalisation of
lncRNA expression profiling in various glioma alone and in
combination with brain tissue. This enables to perform valid
longitudinal studies, e.g. of glioma before and after
malignisation to identify changes of lncRNA expressions
probably driving malignant transformation [21,50,51]. We only
know that these lncRNAs have important roles in profiling of
human glioma, but the true mechanism is not clear.

So many studies show that there is a kind of cell which have
self-renewal capacity and differentiation potential in cancer
tissue [52,53]. The first solid CSCs were identified in human
breast carcinoma by Hajj et al. [54]. They isolated a small
cellular subpopulation which has self-renewal capacity from
breast tumors patients. Marco used custom microarrays to
examine Ultra-Conserved Regions’ (UCR) expression across
samples from different tissues and different types of cancer.
The expression in embryonic stem cells of selected UCRs was
validated by real time PCR. In their study, they found the uc.
283-plus lncRNA was highly expressed in some solid cancers
and associated with pluripotency. It is showed in their research
that uc.283-plus was over-expressed in glioma samples. The
high expression of uc.283-plus in glioma is correlated with a
'cancer stem cell phenotype', a well-studied event occurring in
glioma [55,56]. Lujambio et al. identified RNA in the uc.283
genomic region but transcribed from the opposite strand in
various types of cancer cell lines [57]. They also showed that
uc.283-minus could be regulated by epigenetic alteration.
Recently, Hudson et al. produced a list of the possible ucRNA-
mRNA interactions based on sequence complementarity
according to the thermodynamics of the loop-loop RNA
interactions [58-60]. The mechanism of the lncRNA uc.283
working in the human glioma is not clear till now. These
studies may be a starting point for the further characterization
of lncRNA uc.283 in human glioma tissues and the role
mechanism of the lncRNA uc.283.

As everyone knows, there is Blood-Brain Barrier (BBB) in the
body. The BBB is a highly selective permeability barrier that
separates the circulating blood from the brain Extracellular
Fluid (BECF) in the central nerve system. The BBB acts very
effectively to protect the brain from many common bacterial
infections [61]. It can also affect the absorption and effects of

drugs. One of the reasons listed for the failure of brain
chemotherapy is the presence of BBB [62]. The BBB is
frequently impaired in brain tumor, creating the BTB [63].
BBB and BTB are different. The existence of BTB contributes
to the failure of conventional chemotherapy by restricting
sufficient drug molecules delivery to tumor tissues [18,64,65].
There are two methods for drugs cross the BTB: paracellular or
transcellular. The first method is the main route of absorption
for chemotherapy drug molecules [65-68]. If we can know the
regulatory roles of lncRNAs on BTB permeability, we may
investigate novel methods to safely open the BTB. For BTB,
when BTB permeability is increased, the expressions of tight
junction proteins including ZO-1, occludin, and claudin-5 will
be significantly down regulated [69]. Taurine upregulated gene
1 (TUG1) is a lncRNA located at chromosome 22q12 which
was originally identified that plays crucial roles in vision
system [18,70]. Beside, TUG1 is required for regulating
carcinogenesis in several of tumors [71,72]. Heng et al. have
finished a research whose purpose was to know the lncRNA
TUG1’s role in BTB. Their research indicated that knockdown
of TUG1 increased BTB permeability via binding to miR-144
and then reducing endothelial cells tight junction protein
expression by targeting HSF2 [18]. In their recently study [73],
they found that TUG1’s up expression was associational with
the tumor-induced endothelial cell proliferation, migration and
tube formation. Their study indicated that knockdown of the
TUG1 reduced the expression of vascular endothelial growth
factor A (VEGFA). MiR-299 worked as a bridge in this
progress. The mechanism of this progress maybe TUG1 make
the VEGFA up-expression through the miR-299 was down-
expression. In future, TUG1 may provide a novel therapeutic
target for glioma treatment.

As we know, human glioma is the most common and most
aggressive malignant primary brain tumor in adult. The
prognosis of disease is poor and the reason for this disease is
not clear. In recent years, many researches indicated that
lncRNAs not only have important roles in many normal bio-
progresses but also in many diseases especially in many
cancers such as human glioma and breast cancer. In this
review, we summary the lncRNAs which have roles in the
human glioma. H19, HOTAIR, HOXA6as, Zfhx2as and BC200,
uc.283-plus and TUG1 have roles in the human glioma, but
they work in different progresses of the disease (Table 1). In
this review, we summarized the roles of different lncRNAs in
the glioma. The regulation mechanisms of lncRNA in the
glioma biological processes are not clear. We think the
lncRNAs not only have roles in the biological processes of the
glioma but also related to the recurrence rate and survival time
of the patients. The epigenomic reprogramming by lncRNAs
can be the real reason for the human glioma. Till now, the
human glioma is mainly classified according to the
pathological type. Recent studies show that the prognosis of
the human glioma is related to the expression of lncRNAs type
and the expression quantity of the lncRNAs. LncRNAs may be
useful future therapeutic targets for human glioma and can be
used to classify the human glioma types. LncRNAs could serve
as a new target for targeted therapy. Therefore, clarifying the
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mechanisms of lncRNAs in the various biological processes of
the human glioma will be a critical step in exploring new
strategies in future cancer therapy. LncRNAs may be related to
the pathological grading of glioma. Different patients with the

same pathological grade have the different disease progress.
LncRNAs may be better able to respond to the disease process
and to the extent of the glioma's nausea. LncRNAs may be a
better target for clinical treatment of gliomas.

Table 1. The characterized lncRNAs with potential roles in glioma.

Gene Roles

lncRNAs mRNA splicing, nuclear localization, cell survival, cell cycle, and migration Cancer occurrence, metastasis, drug resistance and recurrence

HOTAIR A role in colorectal cancer, predictive of poor prognosis, cell cycle progression, glioma molecular classification

MALAT1 A role in non-small cell lung cancer

FGF1 An oncogenic role in glioma by activating PI3K/AKT and MEK 1/2 pathways

H19 Overexpression of H19 promotes tumor development after subcutaneous injection of H19-recombined cells into SCID mice

HOXA6as, Zfhx2as and
BC200

Profiling of human glioma

uc.283-plus Correlated with a 'cancer stem cell phenotype'
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