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Introduction
Inflammation is a primary response of the host against 
tissue damage caused by distinct factors like trauma, 
toxins, heat exposure, bacteria or fungal infections…etc. 
Deregulated inflammatory responses can cause excessive 
or long-lasting tissue damage, contributing to the 
development of acute or chronic inflammatory diseases. 
Studies by Rudoff Virchow first reported the link between 
inflammations with carcinogenesis and demonstrated 
that there is an increased infiltration of leukocytes in the 
malignant tissues, suggestive of a mechanistic association 
between inflammation and cancer [1]. Several other 
studies also concluded subsequently that the site of chronic 
inflammation could be the site of solid tumour origin 
[2]. Persistent inflammation co-precipitating with tissue 

damage and inhibition of host cell apoptosis contributes to 
carcinogenesis [3]. Understanding the role of inflammation 
in the origin of tumor initiation, tumor dissemination and 
tumor progression is difficult because several mediators and 
mechanisms contribute to various phases of inflammation 
at different stages of tumorigenesis and [4] affect immune 
surveillance and treatment response. One of the effector 
pathways by which the host fights with microbial infection 
is STING (Stimulator of Interferon Genes) dependent 
signalling pathway [5], and functions via the production 
of free radicals such as Reactive Nitrogen Intermediates 
(RNI), Nitric Oxide (NO), Peroxynitrite (ONOO-), 
Reactive Oxygen Intermediates (ROI), Hydroxyl Radical 
(HO•) and Superoxide (O2−) species. Excess free radicals 
are involved in oxidative DNA damage, nitration of DNA 
bases and cytotoxic, increasing the risk of cancer mutations 
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[6-8]. However, note that not all chronic inflammatory 
diseases increase the risk of cancer and in fact, some of 
them such as psoriasis or rheumatoid arthritis may even 
reduce the cancer risk, or do not significantly promote 
tumorigenesis [9].

Interestingly, several inflammatory mediators like 
chemokines, cytokines, eicosanoids, Reactive Oxygen-
Nitrogen Species (RONS), Cyclooxygenase (COX-2) and 
Nuclear Factor Kappa B (NFκB) etc participate in favor 
of cancer pathogenesis and tumor promotion by genomic 
alterations in the epithelium [10-14]. Cytokines, including 
Transforming Growth Factors (TGF-β), Interleukins, 
Tumor Necrosis Factor (TNF-α), and differentiation 
Macrophage Colony-Stimulating Factors (M-CSF), 
are secreted or membrane-bound molecules that play 
a regulatory role in the growth, differentiation, and 
activation of immune cells [14,15]. 

Evidence from literature had shown that cytokine signalling 
could contribute to a large extent to tumour progression 
either by stimulation of cell growth/differentiation or by 
inhibition of apoptosis of altered cells at the inflammatory 
site [16]. Fibrosis-associated pleiotropic cytokine is also 
able to promote EMT, thereby enhancing the synthesis of 
fibroblast to mediate tissue repair and regulation of Matrix 
Metalloproteinase (MMP) secretion, increased tumour cell 
motility and invasion and metastasis [17,18]. Wendt et al., 
had shown that loss of carcinoma cells in responsiveness 
to TGF-β stimulation can also promote metastasis [11,12]. 
TGF- β in the presence of IL-6 promotes the differentiation 
of T helper cells 17 (Th17), whereas TGF-in the presence 
of IL-4 promotes the differentiation of interleukins (IL-
9 and IL-10) producing T cells, resulting in a lack of 
suppressive function as well as tissue inflammation [19]. 
Fascinatingly, the increased metastasis was found to be 
observed in carcinoma cells which are not showing any 
response to TGF-β stimulation and TGF-β is involved in 
increased chemokine production resulting in recruitment 
of pro-metastatic Myeloid-Derived Suppressor Cell 
(MDSC) at the tumour. Corroborating these, genetic and 
epigenetic alterations had also an impact on the TGF-β 
pathway in human cancer [11,12]. 

Chemokines (C-X-C family) targets all types of leukocytes, 
including hematopoietic cells, mature leucocytes of the 
innate immune system as well as naive, memory, and effector 
lymphocytes. Chemotactic migration of leucocytes largely 
depends on adhesive interaction within the substratum 
and recognition of a chemo attractant gradient [10,13,14]. 
Both aspects, cell adhesion and chemotaxis, are regulated 
by a family of chemotactic cytokines (chemokines). Loss 
of regulation in the control of leukocyte migration results 
in chronic inflammatory diseases [10,13,14]. Chemokine 
receptors are pleiotropic and redundant and belong to the 
large family of seven transmembrane domain receptors 
that couple to heterotrimeric GTP-binding proteins 
(G-proteins). The positive charge of these chemokines 
can bind to the proteoglycans of tissues, it may regulate 

the leukocyte migration that leads to inflammation and 
initiate induction of cancer [13,14]. Thus, interfering with 
chemokine function, form an interventional approach for 
the development of novel anti-inflammatory medication.

Derivatives from arachidonic acid and Polyunsaturated 
Fatty Acid (PUFAs) are like eicosanoids/prostaglandins/ 
leukotrienes/related bioactive lipid mediators that might 
contribute as major factors towards cell homeostasis 
and inflammatory processes. Deregulation of these 
lipid mediators might contribute to numerous diseases 
like cancer, arthritis, and heart diseases for example 
Cyclooxygenase2 (COX2) [20]. The bioactive lipid 
network of eicosanoids is a complex and challenging 
pathway to map in a physiological context and it is 
similar to the cytokine signalling pathway. However, 
advances in lipidomics pathways have helped to elucidate 
unique eicosanoids and related docosanoids with anti-
inflammatory and pro-resolution functions. Inhibiting the 
formation or receptor-mediated actions [21] of classical 
eicosanoids (that is prostaglandins and leukotrienes) by 
aspirin and other Non-Steroidal Anti-Inflammatory Drugs 
(NSAIDs), by the leukotriene inhibitor zileuton, and by 
leukotriene receptor antagonists during inflammation 
advocate as a strategy to alleviate pain, swelling, fever and 
asthmatic conditions [21]. However, pleiotropic effects are 
becoming increasingly appreciated for most eicosanoids 
and their related docosanoid compounds. The role of 
inflammation in cancer development and progression is 
represented in Figure 1.

The role of apoptosis in cancer inflammation

Programmed cell death or apoptosis is under the control 
of growth factors, hormones and cytokines, which are 
depending upon the receptor sites present on the target cells, 
which may trigger genetically controlled cell elimination 
[22-24]. Both extrinsic and intrinsic apoptotic pathways 
are linked to inflammation resulting in the activation of 
transcription factors such as NF-κB, STAT-3, and HIF-1 
thereby in the accumulation of tumorigenic factors in the 
tumor microenvironment [25]. In the extrinsic pathway, 
infection or chronic inflammation is the driving force 
that causes the increase in cancer risk. Alternatively, in 
the intrinsic pathway, genetic alterations of oncogenes 
and/or tumor suppressor genes are the primary cause of 
cancer. Further, cells undergoing necrotic cell death due to 
starvation, and chemical or physical injury have also been 
shown to release factors into adjacent tissues, resulting in 
the transmigration of granulocytes to the damaged tissue. 
The gathering of neutrophils and the release of enzymes 
and free radicals exacerbate the inflammatory process 
and have an impact on tumorigenesis [26]. Macrophages 
engulf the necrotic bodies and reduce inflammation. Yang 
et al., defined necroptosis as cell death mediated through a 
pathway that depends on the Receptor-Interacting Protein 
kinases (RIP) 1-RIP3 complex and that can be inhibited by 
Necrostatin-1 (Nec-1) [27].
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Inflammation with microbial infection leads to cancer 
development

Microbial infection is one of the primary inducers of 
inflammation; other inducers include autoimmune 
diseases. Epidemiologic studies have estimated that 
around 15% of the worldwide cancer incidence is 
associated with microbial infection [6]. Chronic 
infection with Chlamydia trachomatis results in Ovarian 
or cervical cancer, human papillomavirus (cervical 
cancer) or hepatitis B and C (hepatocellular carcinoma), 
Mycoplasma genitalium (STIS in males), Human Herpes 
Virus (HHV-8) (Kaposi’s sarcoma) Epistain bar virus 
(Nasopharyngeal and Helicobacter pylori (Gastric or 
colon cancer or inflammatory bowel disease) respectively 
[28-31]. Microbes infected tumours contain activated 
macrophages and fibroblasts; in addition to that, an 
inflammatory gene expression profile and lymphoreticular 
infiltrate [6] were observed. Inflammatory sensors 
include T and B lymphocytes, fibrocytes and endothelial 
cells, macrophages, dendritic cells, and mast cells [32]. 
Lipopolysaccharide of bacteria have been directly shown 
to affect lung fibroblast viability by activating TLR4 
signalling, and TLR4-induced activation of the PI3K-
Akt signalling pathway, which acts by down regulation 
of Phosphatase and TENsin homolog (PTEN) served the 
function in the inflammatory signalling [33]. A recent study 
by Paris et al., 2017 suggested that miR-718 represses 
the proinflammatory cytokines by modulating PI3K-Akt 
signalling directly targeting the PTEN gene [3,34].

Inflammation and immunity with cancer development

Inflammation is mediated by immune cells as an immediate 
defense in response to infection or injury by noxious 
stimuli to eliminate or neutralize injurious signals (death 
of cell/apoptosis), and initiates healing and regenerative 
processes. The formation of inflammasomes has been 
viewed as primarily a pro-inflammatory component of the 
innate immune response. Innate immunity is a response to 

foreign microbial and viral structures, known as molecular 
structures of Pathogens/pathogen-Associated Molecular 
Structures (PAMS) or normal cellular constituents released 
upon injury and cell death, known as Damage-Associated 
Molecular structures (DAMs) [35]. These are recognized 
by Pattern-Recognition Receptors (PRRs), many of which 
belong to the TLR group (TLR4) [33,36]. DAMPs such as 
HMGB1, S100 proteins, and HSPs, activate inflammatory 
pathways and release IL-1, IL-6, LT-β, IFN-γ, TNF, and 
Transforming Growth Factor (TGF)-β promoting tumor 
progression in the early stage of cancer by inducing chronic 
inflammation [37]. Excess presence of adenosine, and 
uric acid also promote carcinogenesis by inflammation, 
immunosuppression, angiogenesis, and tumour cell 
proliferation [2,38,39]. Tumour derived cytokines like 
Fas ligand (FasL), Vascular Endothelial Growth Factor 
(VEGF), and TGF-h may also facilitate the suppression 
of immune response to tumors [40]. For example, IL-6, a 
key tumor-promoting inflammatory cytokine produced by 
innate immune cells, activates at least three regeneration 
promoting transcription factors like Yes-associated Protein 
1 (YAP), Notch, and Signal Transducer and Activator 
of Transcription 3 (STAT3) which are also involved in 
inflammation, stem cell activation, survival advantage to 
tumour cells [25,35,40,41].

Association of cancer-associated fibroblasts and Cancer 
Stem Cells (CSCs) on inflammation and carcinogenesis

The tumour microenvironment is a heterogeneous 
population of cells composed of distinct cellular and 
structural factors, immune cells, tumour-associated 
macrophages/ neutrophils, lymphocytes, including the 
vasculature like endothelial cells, other stromal cells 
like cancer-associated fibroblasts and extracellular 
matrix. Cancer-Associated Fibroblasts (CAFs) are the 
critical component of the tumor microenvironment and 
exhibit a function in tumor-stromal crosstalk. Generally, 
fibroblasts are involved in tissue remodeling or repair, 

Figure 1: Role of inflammation in cancer development and progression.
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whereas cancer associated fibroblasts are involved in, a 
cascade of an inflammatory response by activating the 
NF-KB signalling mechanism thereby increasing the 
pro-inflammatory gene expression signatures leads to the 
acute and chronic inflammation results in tumorigenesis, 
metastasis, angiogenesis and increases the stem of 
cancer cells. CAFs are inflammatory immune regulators 
responsible for the recruitment of fibroblasts and induction 
of fibrosis [25]. CAFs can produce numerous chemokines, 
cytokines and including Osteopontin (OPN), CXCL1, 
CXCL2, TNF-α, IL-6, IL-1β, CCL-5, Stromal-Derived 
Factor-1α (SDF-1α), and CXCL13[25] and up-regulates 
the TLR4 signalling mechanisms [33,42]. During 
early tumorigenesis, fibroblasts sense changes in tissue 
architecture caused by increased proliferation of adjacent 
epithelial cells and respond to these changes by producing 
pro-inflammatory mediators [43]. Balachander et al. 
observed that CAFs were found to increase the infiltration 
of inflammatory cells to the tumor site and increase the 
invasiveness of the tumor cells in vivo when tumor cells 
were injected with CAFs grown on fibrous matrices [44]. 
In ovarian cancer, CAFs upregulated the expression of 
the pro-inflammatory factors IL-6, cyclooxygenase-2 and 
the chemokine (C-X-C motif) ligand [45]. In addition, 
CAFs may facilitate the invasiveness of originally non-
invasive cancer cells, through protease-activated receptor-
dependent Ca2+ signals and matrix metalloproteinase-1 
upregulation [46,47]. The tumor microenvironment 
consists of another sort of cells known as Circulating 
Cells (CSCs) that also play a role in inflammation in 
solid tumor (ovarian, breast, colon, prostate) signalling 
mechanisms. CSCs were defined as cancer cells within 
the tumour that possess a high capacity of self-renewal, 
viability, metastatic ability, stem cellness of recurrence 
and they are not responded to conventional therapies 
(radiation and chemotherapy). CSCs were regulated by 
a number of signalling mechanisms and found to interact 
with inflammatory cytokines, including IL-1, IL-6 and IL-
8, activate the STAT3/NF-κB, an Interferon-Stimulated 
Regulatory Element (ISRE) [48] dependent signalling 
pathway in tumor and stromal cells, which stimulates 
cytokine production and self-renewal of CSCs [49]. 
Tumor Associated Macrophages (TAMs) also involved in 
inflammatory responses plays a role in cancer progression, 
angiogenesis and immune suppression [49].

The mechanism of inflammation on angiogenesis and 
carcinogenesis

Inflammation and hypoxia both are primary inducers 
of angiogenesis involved in many pathophysiological 
processes including tumor viability by Hypoxia-Inducible 
Factor 1 (HIF-1) activation. It is well-known as an 
adaptive strategy to hypoxia and consists of two subunits: 
HIF-1α and HIF-1β. HIF-1 activates transcription of genes 
involved in vascular/angiogenic reactivity, including 
VEGF, angiopoietin [4,50-52]. In (ANGPT1, ANGPT2) 
and Platelet-Derived Growth Factor (PDGF), which are 

secreted by hypoxic cells and stimulate epithelial cells [53]. 
Exosomes, extracted from high-grade ovarian cancer cells, 
induce angiogenesis, and activating transcription factor 2 
and metastasis-associated 1 may serve a key function in the 
exosomal enhancement of tumor development [50,54-57]. 
Chronic inflammation induces the Vascular Endothelial 
Growth Factor (VEGF)/ Fibroblast Growth Factor (FGF) 
and eNOS, which have a function in tumor angiogenesis, 
viability and metastasis [58], and targeting VEGF to 
inhibit angiogenesis, may prevent cancer progression. 
Inflammation induced by NF-κB/ Nrf2 pathway, critical 
for pro-inflammatory gene expression, is considered to 
exhibit a function in tumor vascularization and inflamed 
tissues, and the NF-κB-inducing kinase and Nrf2 may be 
a therapeutic target in chronic inflammatory diseases and 
tumor neo angiogenesis [59,60]. Inflammation induced by 
Cyclooxygenase (COX2) and bradykines also plays a role 
in tumor cell proliferation and angiogenesis [61].

Inflammation-activated Epithelial-Mesenchymal Transition 
(EMT) and carcinogenesis

EMT is a biological process where epithelial cells lose their 
cell polarity and cell-cell interactions and gain migratory 
and invasive properties to become mesenchymal stem cells. 
EMT was first recognized as a feature of embryogenesis 
and it occurs in wound healing, organ fibrosis, cancer 
progression and cancer metastasis [62]. During the process 
of EMT, many transcription factors have been identified 
to repress E-cadherin such as Zinc finger protein SNAI1 
(Snail), Zinc finger E-box-binding homeobox (ZEB), 
E2A immunoglobulin-enhancer binding factor (E47) and 
Krüppel-like factor 8 bound to and repressed the activity 
of the E-cadherin promoter; whereas Twist-related protein 
1 (Twist) and FOXC2 were common factors that repressed 
E-cadherin transcription indirectly [63-67]. Furthermore, 
another study demonstrated that EMT was utilized by 
cancer cells to enhance aggressiveness by acquiring chemo 
resistance and stem-cell-like properties and escaping 
from host immunity [68]. The structural components of 
microbes including Helicobacter, Mycoplasma hyorhinis, 
Citrobacter rodentium, Epstein Bar Virus (EBV) and 
Hepatitis C (HCV) were found to be induce the EMT 
[17,65,69-71]. Li et al. identified that Lipopolysaccharide 
(LPS) promoted invasion and metastasis of liver 
hepatocellular carcinoma HepG2 cells and downregulated 
the expression of E-cadherin, suggesting that TLR4 may 
be involved in the process of EMT [72]. Furthermore, 
LPS was demonstrated to decrease E-cadherin expression 
in Human Intrahepatic Biliary Epithelial cells (HIBEpiCs) 
and increase the mesenchymal markers S100 calcium-
binding protein A1 and sterile α motif [73]. In addition, 
it was hypothesized that LPS induced EMT of HIBEpiCs, 
through the TGF-β1/Smad2/3 signalling pathway [74,75]. 
Xie et al. has been suggested that Flagellin and muramyl 
dipeptides are two bacterial products that are also associated 
with EMT [76]. A previous study also revealed that 
flagellin induced EMT by activating NF-κB and Mitogen-
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Activated Protein Kinase (MAPK), but failed to increase 
the level of Snail in A549 adenocarcinoma human alveolar 
basal epithelial cells and BEAS-2B human bronchial 
epithelial cells [72]. Another study revealed that EBV 
induced EMT of human corneal epithelial cells through 
activation of PI3K or Akt and ERK signalling pathways 
[29]. The EBV Latent Membrane Protein 1 (LMP1) and 
2A (LMP2A) are involved in EMT; it was first identified 
that LMP1 induced EMT via Twist in nasopharyngeal 
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interaction with TGF-β1 may also stimulate EMT [78]. In 
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Conclusion
Considering these pathophysiological consequences of 
inflammation, inflammatory molecules/markers play a 
pivotal role in tumor initiation, tumor dissemination, 
formation of secondary tumors/tumor metastasis and 
angiogenesis. Targeting the procarcinogenic products 
of inflammation like free radicals, arachidonic acid 
metabolites, NFκB transcription factor, TNF-α, CXC 
chemokines and AKT can be an important approach to 
stopping cancer development and progression. Although 
inhibition of NFκB, and TNF-α impairs the normal function 
of immune cells, expression of inflammatory cytokines/
chemokines associated with immunosuppressive cells 
results in a lack of immunity might lead to the disease 
progression. Studies on inflammation-derived cancers 
with molecular approaches and knockout models might 
help address the problem of cancer origin. Several studies 
are showing that the consumption of natural compounds 
like omega 3 fatty acids, curcumin, S-adenosylmethionine, 
green tea, frankincense and capsaicin have anti-
inflammatory and antioxidant properties. Usually, the 
natural compounds do not have side effects and maintain 
normal cell homeostasis. Correlating the beneficial role 
of these compounds with chronic inflammation and 
subsequent development of tumour progression might be 
helpful for patients with better treatment. 
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