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Abstract
Background: Adenocarcinoma of prostate gland is an internationally important health problem of the man, 

particularly in developed countries. The aim of this exploratory study was to evaluate whether significant changes in the 
prostatic tissue levels of chemical elements and their interrelationships exist in the malignantly transformed prostate.

Methods: Prostatic tissue levels of Al, B, Ba, Br, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr and Zn contents were 
prospectively evaluated in 36 patients with prostate adenocarcinoma (aged 40 to 79 years, stage T1-T4, European-
Caucasian, citizens of Moscow and Obninsk) and 37 apparently healthy male inhabitants of Moscow (aged 41 to 87 
years, European-Caucasian). Measurements were performed using a combination of non-destructive and destructive 
methods: instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry, 
respectively. Tissue samples were divided into two portions. One was used for morphological study while the other 
was intended for chemical element analysis. The reliability of difference in the results between normal and cancerous 
prostate tissues was evaluated by Student’s t-test.

Results: Mean values ± standard error of means for mass fraction (mg/kg on dry mass basis) of chemical element 
in the prostate adenocarcinoma were: Al 353  ±  96, B 16.4 ± 5.6, Ba 29.5 ± 10.1, Br 95.5 ± 10.8, Ca 676 ± 63, Cu 18.8 
± 3.2, Fe 176 ± 20, K 8992 ± 717, Li 0.293 ± 0.077, Mg 355 ± 80, Mn 7.24 ± 2.04, Na 7784 ± 928, P 6847 ± 717, S 5230 
± 576, Si 337 ± 41, Sr 5.56 ± 0.84 and Zn 127 ± 12, respectively. The contents of Al, B, Ba, Br, Cu, Fe, Li, Mn, Si and 
Sr were significantly higher while those of Ca, K, Mg, Na, S and Zn were significantly lower in cancerous tissues than 
in normal tissues. Moreover, it was shown that malignant transformation significantly changed the interrelationships of 
chemical elements in prostate.

Conclusion: In adenocarcinoma transformed prostate tissue the chemical element metabolism is significantly 
disturbed.

Keywords: Chemical elements; Human prostate gland; Prostate 
adenocarcinoma; Neutron activation analysis, Inductively coupled 
plasma atomic emission spectrometry

Abbreviations: PCa: Prostate Cancer; INAA-SLR: Instrumental 
Neutron Activation Analysis with High Resolution Spectrometry of 
Short Lived Radio Nuclides; ICP-AES: Inductively Coupled Plasma 
Atomic Emission Spectrometry

Introduction
Prostate cancer (pca) is the most prevalent nonskin male cancer 

in many populations, including USA, West European states, Australia, 
New Zealand, and others [1]. Pca ranks second in incidence and the 
fifth in mortality in men worldwide [2]. Although the etiology of pca 
is unknown, several risk factors including diet (calcium, zinc and some 
other nutrients) have been well identified [3,4]. It is also reported that 
the risk of having pca drastically increase with age, being three orders 
of magnitude higher for the age group 40–79 years than for those 
younger than 39 years [4,5]. Chemical elements (major and trace) are 
not only building material but have essential physiological functions 
such as maintenance and regulation of cell function, gene regulation, 
activation or inhibition of enzymatic reactions, and regulation of 
membrane function. Essential or toxic (mutagenic, carcinogenic) 
properties of chemical elements depend on tissue-specific need or 
tolerance, respectively [6]. Excessive accumulation or an imbalance of 
the chemical elements may disturb the cell functions and may result in 
cellular degeneration or death [6-8]. High intraprostatic calcium (Ca) 
and zinc (Zn) concentrations are probably one of the main factors acting 
in both initiation and promotion stages of prostate carcinogenesis [9-

14]. A significant tendency of age-related increase in Ca, magnesium 
(Mg), Zn, and many other chemical element mass fractions in the 
normal prostate was recently demonstrated by us [11-23]. Moreover, 
it was found that the prostatic tissue content of Ca, potassium (K), Mg, 
sulphur (S), and Zn are an androgen dependent chemical element, 
but content of aluminium (Al), boron (B), barium (Ba) bromine (Br), 
copper (Cu), iron (Fe), lithium (Li), manganese (Mn), sodium (Na), 
phosphorus (P), silicon (Si) and strontium (Sr) are not bound to levels of 
sex hormone [24]. Thus, it seems fair to suppose that besides Ca and Zn, 
many other chemical elements also play a role in the pathophysiology 
of the prostate. The chemical element contents in tissue of the normal 
[13,16,25-42] and cancerous [34,36,38,43-53] prostate have been 
studied, producing contradictory results. The majority of these data are 
based on measurements of processed tissue and in many studies tissue 
samples are digested before analysis. The most frequently used digestion 
procedures have been the traditional dry ashing and wet digestion 
that allow destruction of organic matter of the sample. Moreover, in 
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some cases before digestion, prostate samples are treated with solvents 
(distilled water, ethanol etc.) and then are dried at a high temperature 
for many hours. Sample pretreatment and digestion is a critical step 
in elemental analysis, due to risk of contamination and analytes loss, 
contributing for the uncontrolled analysis errors [54-59]. Additionally, 
only a few of these studies employed quality control using certified 
reference materials for determination of the chemical element mass 
fractions. Thus, the questions about the differences between chemical 
element contents in normal and cancerous prostate tissue remained 
open. It is obvious that the most effective will be non-destructive 
analytical methods because they involve a minimal treatment of 
sample since the chances of significant loss or contamination would be 
decreased. During the last decades there is agreement on the absolute 
necessity of quality insurance in analytical research works. Therefore, 
this work had two aims. The first was to obtain reliable results about 
the Al, B, Ba, Br, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr and Zn mass 
fractions and their relationships in nonhyperplastic prostate of healthy 
men aged over 40 years and in adenocarcinoma of prostate combining 
in consecutive order non-destructive instrumental neutron activation 
analysis with high resolution spectrometry of short-lived radionuclides 
(INAA-SLR) with destructive inductively coupled plasma atomic 
emission spectrometry (ICP-AES). The second aim was to compare the 
levels of chemical elements studied in the malignant prostate with those 
in normal gland.

Material and Methods
All patients suffered from adenocarcinoma of prostate (n = 36, mean 

age M ± SD was 64 ± 11 years, range 40-79, stage T1-T4, European-
Caucasian, citizens of Moscow and Obninsk) were hospitalized in the 
Urological Department of the Medical Radiological Research Centre, 
Obninsk (a small city in a non-industrial region 105 km south-west 
of Moscow). Transrectal puncture biopsy of suspicious indurated 
regions of the prostate was performed for every patient, to permit 
morphological study of prostatic tissue at these sites and to estimate 
their chemical element contents. In all cases the diagnosis prostate 
adenocarcinoma has been confirmed by clinical and morphological 
results obtained during studies of biopsy and resected materials.

Normal prostates for the control group samples were removed at 
necropsy from 37 men (mean age 55 ± 11 years, range 41-87, European-
Caucasian, citizens of Moscow), who had died suddenly. The majority 
of deaths were due to trauma. Tissue samples were collected from the 
peripheral zone of prostate dorsal and lateral lobes. A histological 
examination in the control group was used to control the age norm 
conformity, as well as to confirm the absence of microadenomatosis 
and latent cancer.

All tissue samples were divided into two portions. One was used 
for morphological study while the other was intended for chemical 
element analysis. After the samples intended for chemical element 
analysis were weighed, they were freeze-dried and homogenized. The 
sample weighing about 10 mg (for biopsy materials) and 50-100 mg 
(for resected materials) was used for chemical element measurement 
by INAA-SLR. The samples for INAA-SLR were sealed separately in 
thin polyethylene films washed beforehand with acetone and rectified 
alcohol. The sealed samples were placed in labelled polyethylene 
ampoules.

After NAA-SLR investigation the prostate samples were taken out 
from the polyethylene ampoules and used for ICP-AES. The samples 
were decomposed in autoclaves; 1.5 ml of concentrated HNO3 (nitric 
acid at 65%, maximum (max) of 0.0000005% Hg; GR, ISO, Merck) and 

0.3 ml of H2O2 (pure for analysis) were added to prostate tissue samples, 
placed in one chamber autoclaves (Ancon-AT2, Ltd., Russia) and then 
heated for 3h at 160–200°C. After autoclaving, they were cooled to 
room temperature and solutions from the decomposed samples were 
diluted with deionized water (up to 20 ml) and transferred to plastic 
measuring bottles. Simultaneously, the same procedure was performed 
in autoclaves without tissue samples (only HNO3 + H2O2 +  deionized 
water), and the resultant solutions were used as control samples.

A horizontal channel equipped with the pneumatic rabbit system 
of the WWR-C research nuclear reactor was applied to determine 
the mass fraction of Br, Ca, K, Mg, Mn and Na by INAASLR. The 
neutron flux in the channel was 1.7 × 1013 n cm−2 s−1. Ampoules with 
prostate samples, biological synthetic standards [60], intra laboratory-
made standards, and certified reference material (CRM) were put into 
polyethylene rabbits and then irradiated separately for 180s. Copper 
foils were used to assess neutron flux. The measurement of each sample 
was made twice, 1 and 120 min after irradiation. The duration of the 
first and second measurements was 10 and 20 min, respectively. The 
gamma spectrometer included the 100 cm3 Ge (Li) detector and on-line 
computer based MCA system. The spectrometer provided a resolution 
of 1.9 kev on the 60 Co 1332 kev line. 

Sample aliquots were used to determine the Al, B, Ba, Ca, Cu, 
Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, V and Zn mass fractions by ICP-
AES using the Spectrometer ICAP-61 (Thermo Jarrell Ash, USA). The 
determination of the trace element content in aqueous solutions was 
made by the quantitative method using calibration solutions (High 
Purity Standards, USA) of 0.5 and 10 mg/L of each element. The 
calculations of the trace element content in the probe were carried 
out using software of a spectrometer (thermospec, version 4.1). The 
detection limit (DL) was calculated as:

DL = Ci + 3×SD

where Ci is a mean value of the isotope content for measurements in 
control samples, and SD is a standard deviation of Ci determination 
in control samples. For elements with several isotopes, the DL 
corresponded to that of the most abundant isotope. The relative standard 
deviation (RSD) did not exceed 0.05 for elements with Ci > 5 DL and 
did not exceed 0.20 for elements with Ci < 5 DL. Information detailing 
with the NAA-SLR and ICP-AES methods used and other details of the 
analysis was presented in our previous publication [12,13,16,18,21]. 

For quality control, ten subsamples of the certified reference 
materials IAEA H-4 Animal muscle from the International Atomic 
Energy Agency (IAEA), and also five sub-samples INCTSBF-4 Soya 
Bean Flour, INCT-TL-1 Tea Leaves and INCT-MPH-2 Mixed Polish 
Herbs from the Institute of Nuclear Chemistry and Technology (INCT, 
Warszawa, Poland) were analysed simultaneously with the investigated 
prostate tissue samples. All samples of CRM were treated in the same 
way as the prostate tissue samples. Detailed results of this quality 
assurance program were presented in earlier publications [13,18,21]. 

A dedicated computer program for INAA mode optimization 
was used [61]. Using Microsoft Office Excel software, a summary of 
the statistics, including arithmetic mean, standard deviation, standard 
error of mean, minimum and maximum values, median, and percentiles 
with 0.025 and 0.975 levels was calculated for chemical element mass 
fractions. For elements investigated by two methods the mean of all 
results was used. The reliability of difference in the results between 
two groups was evaluated by the parametric Student’s t-test. For the 
estimation of the Pearson correlation coefficient between different 
chemical elements the Microsoft Office Excel software were also used.
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Results
Table 1 presents certain statistical parameters (arithmetic mean, 

standard deviation, standard error of mean, minimal and maximal 
values, median, percentiles with 0.025 and 0.975 levels) of the Al, B, Ba, 
Br, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr and Zn contents in normal 
prostate tissue and adenocarcinoma of prostate. 

The ratios of means and the reliability of difference between mean 
values of Al, B, Ba, Br, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr and 
Zn contents in normal and cancerous prostate tissue are presented in 
Table 2.

Tables 3 and 4 depict results of inter-element correlation calculations 
(values of r–coefficient of correlation) including all pair of chemical 
elements identified in normal prostate tissue and adenocarcinoma of 
prostate, respectively.

The comparison of our results with published data for Al, B, Ba, Br, 
Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr and Zn contents in normal 
[13,16,25-42] and cancerous [34,36,38,43-53] prostate tissue is shown 
in Table 5.

Discussion
The INAA-SLR allowed determine the mean mass fractions of 6 

chemical elements (Br, Ca, K, Mg, Mn and Na) in the tissue samples of 
normal and cancerous prostate glands. The ICP-AES allowed assess the 
mean mass fractions of 16 chemical elements (Al, B, Ba, Ca, Cu, Fe, K, 
Li, Mg, Mn, Na, P, S, Si, Sr and Zn) in the tissue samples of normal and 
cancerous prostate glands. The mass fraction of these elements were 
measured in all, or a major portion of normal and cancerous prostate 
samples. Generally, the mass fractions of V in prostate tissue samples 
were lower than the corresponding detection limit of ICP-AES (0.2 mg/
kg, on dry-mass basis). 

The use in consecutive order two analytical methods allowed us to 
estimate the mass fractions of 18 chemical elements in human prostate 
tissue. Good agreement was found between the mean values of the 
Ca, K, Mg, Mn, and Na mass fractions determined by non-destructive 
NAA-SLR and destructive ICP-AES indicating complete digestion of 
the prostate tissue samples (for ICP-AES techniques) and correctness 
of all results obtained by the two methods. The fact that the elemental 

mass fractions (M ± SD) of the certified reference materials obtained 
in the present work were in good agreement with the certified values 
and within the corresponding 95% confidence intervals suggests an 
acceptable accuracy of the measurements performed on in prostate 
tissue samples.

From Tables 1 and 2, it is observed that in adenocarcinoma the mass 
fractions of Al, B, Ba, Br, Cu, Fe, Li, Mn, Si and Sr are significantly higher 
while the mass fractions of Ca, K, Mg, Na, S and Zn are significantly 
lower than in normal tissues of the prostate. Thus, the mass fractions 
of all chemical elements investigated in the study with the exception of 
P show significant variations in cancerous tissues when compared with 
normal tissues of the prostate. For example, in adenocarcinoma the 
mean of Al, B, Ba, Li and Mn mass fraction was almost 10, 16, 19, 7 and 
5 times, respectively, greater than in normal prostate tissue (Table 2). In 
contrary, the Ca, Mg and Zn mass fractions were nearly 4, 3 and 8 times, 
respectively, and the K, Na and S mass fractions were approximately 20-
40%, lower in adenocarcinoma than in normal prostate tissue (Table 2). 

In normal prostate glands a statistically significant direct correlation 
was found, for example, between the prostatic Zn and Cu (r = 0.42), Zn 
and Mg (r = 0.54) and Zn and P (r = 0.85), between the prostatic Mg 
and Na (r = 0.53), Mg and P (r = 0.71), Mg and S (r = 0.54) and Mg 
and Zn (r = 0.54), between the prostatic Ca and Br (r = 0.57), and also 
Ca and Sr (r = 0.70), between the prostatic K and S (r = 0.68), between 
the prostatic Na and S (r = 0.49), between the prostatic Si and Al (r = 
0.68), and between the prostatic Sr and Br (r = 0.70) (Table 3). In the 
same group a pronounced inverse correlation was observed between 
the prostatic K and Br (r = -0.46). If some positive correlations between 
the elements were predictable (e.g. Ca–Sr), the interpretation of other 
observed interrelationships requires further study for a more complete 
understanding. 

 In cancerous prostates many significant correlations between chemical 
elements found in the control group are no longer evident, for example, 
correlations for pairs with Zn, Mg, Ca, correlation between K and S, etc. 
(Table 4). Thus, if we accept the levels and interrelationships of chemical 
element mass fraction in prostate glands of males in the control group 
as a norm, we have to conclude that with a malignant transformation 
the levels and interrelationships of chemical elements in prostate 
significantly changed. No published data referring to correlations 

Tissue Element Mean SD SEM Min Max Median
Per.

0.025 0.975

Normal n = 37

Al 34.1 17.7 3.5 9.6 73.3 28.9 11.9 70.8
B 1.04 0.86 0.18 0.3 3 0.7 0.3 2.89

Ba 1.53 1 0.21 0.38 4.33 1.18 0.42 3.75
Br 32.9 17.7 3.6 12.5 80.7 28.2 12.6 70.9
Ca 2428 1232 233 1180 6893 2195 1197 5553
Cu 9.85 4.65 0.97 4.1 22.2 8.3 4.98 19.8
Fe 132 40 7 62 218 133 67.6 212
K 11650 2340 434 6325 18198 11403 7352 15489
Li 0.0419 0.0264 0.0055 0.015 0.101 0.03 0.0161 0.1

Mg 1071 409 76 447 2060 1017 520 1955
Mn 1.32 0.42 0.09 0.75 2.8 1.3 0.836 2.23
Na 10987 2158 393 6415 15300 10911 6718 15151
P 7617 1839 368 5969 14838 7225 6017 11741
S 8657 1271 254 5662 12567 8569 6680 11366
Si 101 55 11 32.3 235 94.1 37 205
Sr 2.34 1.86 0.38 0.87 8.1 1.47 0.916 6.43
Zn 1061 933 153 223 5868 983 251 2342
Al 353 255 96 43.5 765 331 46.1 730
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Carcinoma n = 36

B 16.4 13.6 5.6 8 43.2 10.8 8.03 40
Ba 29.5 26.8 10.1 1.83 72.3 22.5 2.5 70.6
Br 95.5 37.5 10.8 16 148 102 24 143
Ca 676 168 63 496 868 751 497 864
Cu 18.8 10.5 3.2 4.5 30.6 12.3 5.45 30.5
Fe 176 106 20 35 472 144 49.2 416
K 8992 1897 717 6047 11833 9145 6231 11574
Li 0.293 0.204 0.077 0.04 0.55 0.3 0.0419 0.547

Mg 355 197 80 136 598 365 137 588
Mn 7.24 5.4 2.04 1 16.2 5.8 1.2 15.5
Na 7784 2455 928 3913 12239 7629 4379 11651
P 6847 1897 717 2845 8546 7009 3433 8512
S 5230 1525 576 3394 7241 5022 3482 7239
Si 337 109 41 172 535 342 187 508
Sr 5.56 2.24 0.84 2.1 9.2 5.5 2.42 8.9
Zn 127 73 12 27 311 104 33.1 308

M: Arithmetic Mean; SD: Standard Deviation; SEM: Standard Error of Mean; Min: Minimum Value; Max: Maximum Value; Per. 0.025: Percentile with 0.025 level; Per. 0.975: 
Percentile with 0.975 level.

Table 1: Some statistical parameters of Al, B, Ba, Br, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr and Zn mass fractions (mg/kg, dry mass basis) in normal and cancerous 
prostate.

Element

Prostatic tissue Ratio
Normal Adenocarcinoma Student’s (t-test)

Adenocarcinoma to Normal41-87 year 40-79 year
P

n = 37 n = 36
Al 34.1 ± 3.5 353 ± 96 0.016 10.4
B 1.04 ± 0.18 16.4 ± 5.6 0.04 15.8
Ba 1.53 ± 0.21 29.5 ± 10.1 0.032 19.3
Br 32.9 ± 3.6 95.5 ± 10.8 0.000092 2.9
Ca 2428 ± 233 676 ± 63 0.000000041 0.28
Cu 9.85 ± 0.97 18.8 ± 3.2 0.02 1.91
Fe 132 ± 7 176 ± 20 0.047 1.33
K 11650 ± 434 8992 ± 717 0.009 0.77
Li 0.0419 ± 0.0055 0.293 ± 0.077 0.017 6.99

Mg 1071 ± 76 355 ± 80 0.0000086 0.33
Mn 1.32 ± 0.09 7.24 ± 2.04 0.027 5.48
Na 10987 ± 393 7784 ± 928 0.012 0.71
P 7617 ± 368 6847 ± 717 0.36 (NS) 0.9
S 8657 ± 254 5230 ± 576 0.00051 0.6
Si 101 ± 11 337 ± 41 0.00091 3.34
Sr 2.34 ± 0.38 5.56 ± 0.84 0.0075 2.38
Zn 1061 ± 153 127 ± 12 0.00000054 0.12

Table 2: Comparison of mean values (M ± SEM) of Al, B, Ba, Br, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr and Zn mass fractions (mg/kg, dry mass basis) in normal and 
cancerous prostate. 
M: Arithmetic Mean; SEM: Standard Error of Mean; NS: Not Significant Difference

between chemical elements mass fractions in cancerous prostate tissue 
were found. 

 When our results were compared with data of literature a number of 
values for chemical element mass fractions were not expressed on a dry 
mass basis by the authors of the cited references. However, we calculated 
these values using the medians of published data for water–83% [62] 
and ash–1% on wet mass basis [63] contents in nonhyperplastic prostate 
of adult men, and also for water - 80% in cancerous tissue of prostate 
[64]. The obtained values for Al, B, Ba, Br, Ca, Cu, Fe, K, Mg, Mn, Na, P, 
S, Si, Sr and Zn mass fractions in histologically normal prostate tissue, 
as shown in Table 5, agree well with median of means cited by other 
researches for the intact prostatic tissue or nonhyperplastic prostate 
glands of adult males, including samples received from persons who 
died from various diseases. No published data referring to Li mass 

fractions in normal prostate tissue were found. For the adenocarcinoma 
of prostate the means for B, Br and Na are significantly higher than then 
maximum mean value of previously reported data. The means of this 
work for Mg, Mn and S are somewhat lower, than previously reported 
minimal results. No published data referring to Al, Ba, Li, Si and Sr 
mass fractions in cancerous tissue of prostate were found. 

 Characteristically, elevated or deficient levels of chemical elements 
observed in cancerous tissues are discussed in terms of their potential 
role in the initiation, promotion, or inhibition of prostate cancer. In our 
opinion, abnormal levels of some chemical elements in adenocarcinoma 
could be the consequence of malignant transformation. For instance, 
compared to other soft tissues, the human prostate has higher levels 
of Ca, K, Mg, S, Zn and some other chemical elements [16-19,24]. In 
our previous studies we demonstrated also that the glandular lumen 
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Element B Ba Br Ca Cu Fe K Li
Al -0.313 0.294 -0.002 -0.277 -0.226 0.11 0.233 0.431a

B 1 0.221 -0.253 -0.16 0.069 -0.058 0.02 0.114
Ba 0.294 1 0.03 -0.037 0.078 -0.193 -0.058 0.553b

Br -0.002 0.03 1 0.572b 0.266 -0.012 -0.458a 0.156
Ca -0.277 -0.037 0.572b 1 0.222 0.056 -0.224 -0.092
Cu -0.226 0.078 0.266 0.222 1 0.229 -0.096 -0.074
Fe 0.11 -0.193 -0.012 0.056 0.229 1 0.03 -0.025
K 0.233 -0.058 -0.458a -0.224 -0.096 0.03 1 -0.198
Li 0.431a 0.553b 0.156 -0.092 -0.074 -0.025 -0.198 1

Mg 0.027 0.199 -0.062 -0.034 0.411 -0.042 0.203 -0.027
Mn 0.083 0.1 -0.121 -0.223 0.398 0.363 0.099 0.106
Na -0.38 0.077 -0.251 -0.118 0.148 0.204 0.226 0.085
P -0.025 0.235 -0.085 0.189 0.366 0.05 0.211 -0.143
S -0.072 0.307 -0.319 -0.281 0.122 0.227 0.676c 0.011
Si -0.033 0.242 -0.378 -0.289 -0.253 -0.081 0.325 0.423a

Sr -0.157 0.269 0.699c 0.604b -0.028 -0.237 -0.408 0.469a

Zn -0.145 0.162 0.057 0.042 0.424a 0.008 -0.016 -0.154
Element Mg Mn Na P S Si Sr Zn

Al -0.152 0.22 0.061 0.233 0.288 0.679c 0.029 -0.133
B 0.027 0.083 -0.38 -0.025 -0.072 -0.033 -0.157 -0.145

Ba 0.199 0.1 0.077 0.235 0.307 0.242 0.269 0.162
Br -0.062 -0.121 -0.251 -0.085 -0.319 -0.378 0.699c 0.057
Ca -0.034 -0.223 -0.118 0.189 -0.281 -0.289 0.604b -0.042
Cu 0.411 0.398 0.148 0.366 0.122 -0.253 -0.028 0.424a

Fe -0.042 0.363 0.204 0.05 0.227 -0.081 -0.237 0.008
K 0.203 0.099 0.226 0.211 0.676c 0.325 -0.408 -0.016
Li -0.027 0.106 0.085 -0.143 0.011 0.423a 0.469a -0.154

Mg 1 0.142 0.523b 0.706c 0.539b -0.096 -0.208 0.535b

Mn 0.142 1 0.087 -0.041 0.22 0.165 -0.168 -0.045
Na 0.523b 0.087 1 0.148 0.494a 0.201 -0.178 0.212
P 0.706c -0.041 0.148 1 0.344 -0.125 -0.245 0.845c

S 0.539b 0.22 0.494a 0.344 1 0.241 -0.302 0.08
Si -0.096 0.165 0.201 -0.125 0.241 1 0.146 -0.201
Sr -0.208 -0.168 -0.178 -0.245 -0.302 0.146 1 -0.278
Zn 0.535b -0.045 0.212 0.845c 0.08 -0.201 -0.278 1

Table 3: Intercorrelations (r: coefficient of correlation) of pairs of the Al, B, Ba, Br, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, and Zn mass fractions in normal prostate glands.

and, therefore, the prostatic fluid is the main pool of Ca, K, Mg, S, Zn 
accumulation in the normal human prostate [14,65-68]. These data 
suggests that these elements could be involved in functional features 
of prostate tissue. Moreover, it is plausible that the reason for the 
emergence and development of adenocarcinoma is associated with 
abnormally high concentration of Zn, Ca and Mg in the prostate tissue 
of older men [10,11,14,23]. However, malignant transformation is 
accompanied by a loss of tissue-specific functional features, including 
the prostatic fluid production, which leads to a significant reduction 
in the contents of such chemical elements as Ca, K, Mg, S, and Zn 
associated with functional characteristics of the human prostate tissue.

 On the other hand, the well documented fact that the cancer cells, 
including adenocarcinoma of human prostate, are under high 
levels of oxidative stress [69]. The cancer cells exposed to oxidative 
stress tend to forced adaptation mechanisms including production 
higher levels of antioxidant enzymes such as manganese-containing 
superoxide dismutase (Mn-SOD). Mn-SOD has been shown to be 
high in human tumors including lung cancer [70], ovarian carcinoma 
[71,72], thyroid tumours [73], renal cell carcinoma [74], brain tumors 
[75], esophageal and gastric cancers [76,77], malignant mesothelioma 

[78,79], hepatocellular carcinoma [80], colorectal tumors [81], breast 
cancer [82] and some other tumors [83] as compared to corresponding 
non-malignant control tissues. It was reported also that intracellular 
Mn content was positively correlated with Mn-SOD, suggesting that 
the intracellular Mn level is associated with Mn-SOD activity [79]. In 
cited study was shown that the human mesothelioma cells contained 
an extremely high level of Mn, an amount 7.3-fold higher than that in 
the human mesothelial cells [79]. Such great difference between Mn 
content in normal and malignant cells agrees well with our result for 
normal and cancerous prostate tissue (Table 2).

 Some environmental factors linked to pca pathogenesis include diet, 
specifically red meat, which is one of the main sources of Fe supply. 
Iron is very important in many physiological processes but it is toxic 
when it is present in excess. The carcinogenic potential of Fe in pca is 
not fully understood however one of the possible way is a link between 
iron-induced oxidative stress and inflammation [84,85]. Otherwise, it 
is well known that Fe mass fraction in sample depends mainly from the 
blood volumes in tissues. Cancerous tissues are predominantly hyper 
vascular lesions [86-89]. Thus, it is possible to speculate that prostate 
adenocarcinoma is characterized by an increase of the mean value of 
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Element B Ba Br Ca Cu Fe K Li
Al 0.696 0.825a 0.364 0.029 0.481 -0.415 0.109 0.910b

B 1 0.555 0.319 0.127 0.524 -0.205 0.492 0.729
Ba 0.555 1 0.335 0.013 0.088 -0.158 -0.177 0.596
Br 0.319 0.335 1 -0.255 0.107 -0.171 0.461 0.337
Ca 0.127 0.013 -0.255 1 0.046 0.415 0.314 0.061
Cu 0.524 0.088 0.107 0.046 1 -0.145 0.587 0.755a

Fe -0.205 -0.158 -0.171 0.415 -0.145 1 -0.336 -0.386
K 0.492 -0.177 0.461 0.314 0.587 -0.336 1 0.296
Li 0.729 0.596 0.337 0.061 0.755a -0.386 0.296 1

Mg 0.304 0.129 -0.082 0.405 0.187 -0.182 0.357 -0.022
Mn 0.081 0.405 0.213 0.003 0.365 -0.245 0.001 0.69
Na 0.192 -0.248 0.378 0.251 0.353 -0.399 0.916b 0.011
P 0.362 0.458 0.567 -0.107 0.465 -0.771a 0.558 0.515
S 0.446 0.068 0.079 0.199 0.104 -0.509 0.568 -0.036
Si 0.434 0.387 0.658 0.044 0.587 -0.16 0.404 0.816a

Sr 0.482 0.425 -0.027 0.411 0.559 -0.58 0.495 0.597
Zn -0.168 -0.168 0.109 0.596 0.082 -0.052 0.519 -0.421

Element Mg Mn Na P S Si Sr Zn
Al 0.081 0.61 -0.09 0.109 0.062 0.686 0.598 -0.448
B 0.304 0.081 0.192 0.362 0.446 0.434 0.482 -0.168
Ba 0.129 0.405 -0.248 0.458 0.068 0.387 0.425 -0.378
Br -0.082 0.213 0.378 0.567 0.079 0.658 -0.027 0.109
Ca 0.405 0.003 0.251 -0.107 0.199 0.044 0.411 0.596
Cu 0.187 0.365 0.353 0.465 0.104 0.587 0.559 0.082
Fe -0.182 -0.245 -0.399 -0.771a -0.509 -0.16 -0.58 -0.052
K 0.357 0.001 0.916b 0.558 0.568 0.404 0.495 0.519
Li -0.022 0.69 0.011 0.515 -0.036 0.816a 0.597 -0.421

Mg 1 -0.498 0.437 0.411 0.717 -0.199 0.455 0.651
Mn -0.498 1 -0.143 0.346 -0.357 0.728 0.355 -0.474
Na 0.437 0.143 1 0.594 0.711 0.129 0.472 0.706
P 0.411 0.346 0.594 1 0.592 0.469 0.684 0.128
S 0.717 -0.357 0.711 0.592 1 -0.193 0.589 0.656
Si -0.199 0.728 0.129 0.469 -0.193 1 0.26 -0.419
Sr 0.455 0.355 0.472 0.684 0.589 0.26 1 0.347
Zn 0.651 -0.474 0.706 0.128 0.656 -0.419 0.347 1

Statistically significant difference: ap ≤ 0.05; bp ≤ 0.01; cp ≤ 0.001 

Table 4: Intercorrelations (r: coefficient of correlation) of pairs of the Al, B, Ba, Br, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, and Zn mass fractions in cancerous prostate glands.

the Fe mass fraction because the level of tumor vascularization is higher 
than that in normal prostate tissue. 

 Numerous studies in the literature have reported that tumour Cu 
levels are elevated in a variety of malignancies [90]. This phenomena 
may be bound with a role of Cu ions in oxidative stress [90,91] and 
also with tumor angiogenesis because Cu ions stimulate blood vessel 
development [92]. 

 Bromide compounds, especially potassium bromide (kbr), sodium 
bromide (nabr), and ammonium bromide (NH4Br), are frequently used 
as sedatives in Russia [93]. It may be the reason for elevated level of Br 
in tissue specimens of patients with adenocarcinoma of prostate gland.

 Reasons of the elevated levels of Al, B, Ba, Li, Si and Sr in prostate 
adenocarcinoma in comparison with non-cancerous gland are unclear 
and need special investigations. 

 To clarify the role of chemical elements in prostate tumorogenesis, 
the mass fractions of Al, B, Ba, Br, Ca, Cu, Fe, K, Li, Mg, Mn, Na, S, 
Si, Sr and Zn and the interrelationships of these chemical element 

mass fractions were investigated only in the adenocarcinoma of 
prostate gland. In future studies of the role of chemical elements in 
tumorogenesis of the prostate gland the specimens of prostate cancer 
with other histopathologic feature have to be included. Moreover, there 
are many other chemical elements involved in normal metabolism and 
pathophysiology of the prostate gland. Thus, further studies are needed 
to extend the list of chemical elements investigated in this manner.

Conclusion
The combination of nondestructive INAA-SLR and destructive 

ICP-AES methods is satisfactory Analytical tool for the precise 
determination of 17 chemical element mass fractions in the tissue. 
Samples of prostate adenocarcinoma and normal prostate glands. The 
sequential application of two Methods allowed precise quantitative 
determinations of mean mass fraction of Al, B, Ba, Br, Ca, Cu, Fe, K, Li, 
Mg, Mn, Na, P, S, Si, Sr and Zn. It was observed that the mass fractions 
of all Chemical elements investigated in the study with the exception 
of P show significant variations in Cancerous tissues when compared 
with normal tissues of the prostate. Moreover, it was shown that 
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Prostate tissue Element
Published data Reference

This work
Median of means Minimum of means Maximum of means

(n)a M or M ± SD, (n)b M or M ± SD, (n)b M ± SD

Normal

Al 34.2 (6) 13 ± 66 (50) [25] 59 (9) [26] 34.1 ± 17.7
B 1.0 (10) <0.47 (50) [25] 1.2 (1) [27] 1.04 ± 0.86

Ba 1.75 (10) 0.12 (50) [25] 102 ± 82 (10) [28] 1.53 ± 1.00
Br 30.0 (18) 14 ± 9 (4) [29] 50 ± 32 (10) [30] 32.9 ± 17.7
Ca 1990 (22) 427 ± 117 (21) [31] 7500 ± 12300 (57) [32] 2428 ± 1232
Cu 9.6 (28) 1.37 (-) [33] 1488 ± 47 (10) [34] 9.85 ± 4.65
Fe 118 (34) 5.7 ± 0.1 (5) [35] 1224 ± 76 (10) [34] 132 ± 40
K 11800 (20) 4360 ± 364 (27) [36] 13000 ± 660 (16) [16] 11650 ± 2340
Li - - - 0.042 ± 0.026

Mg 1020 (21) 498 ± 172 (13) [32] 2056 ± 476 (21) [31] 1071 ± 409
Mn 1.48 (24) <0.47 (12) [37] 106 ± 18 (5) [38] 1.32 ± 0.42
Na 10500 (16) 23 ± 26 (13[32] 13700 ± 3500 (4) [39] 10987 ± 2158
P 7120 (15) 2060 ± 690 (13) [32] 14500 (12) [37] 7617 ± 1839
S 7370 (6) 5300 ± 750 (57) [32] 8810 ± 730 (16) [18] 8657 ± 1271
Si 100 (6) 51 (1) [40] 111 ± 64 (64) [13] 101 ± 55
Sr 1.46 (13) 0.75 ± 0.09 (48) [25] 2.61 ± 3.07 (27) [41] 2.34 ± 1.86
Zn 525 (75) 101 (1) [42] 3218 ± 41 (10) [34] 1061 ± 933

Adeno- cacinoma

Al - - - 353 ± 255
B 1.78 (1) 1.78 ± 0.65 (23) [43] 1.78 ± 0.65 (23) [43] 16.4 ± 13.6
Ba - - - 29.5 ± 26.8
Br 1.5 (1) 1.5 ± 0.6 (27) [36] 1.5 ± 0.6 (27) [36] 95.5 ± 37.5
Ca 1830 (10) 658 ± 109 (12) [44] 11200 (1) [45] 676 ± 168
Cu 13 (14) 4.0 ± 3.0 (11) [46] 1930 ± 65 (10) [34] 18.8 ± 10.5
Fe 195 (15) 12.5 ± 5.0 (20) [47] 6850 (1) [45] 176 ± 106
K 5600 (5) 740 ± 90 (27) [36] 18100 ± 400 (4) [48] 8992 ± 1897
Li - - - 0.293 ± 0.204

Mg 935 (5) 361 ± 174 (25) [49] 1050 ± 720 (11) [46] 355 ± 197
Mn 17.3 (6) 8.0 ± 2.0 (3) [50] 160 ± 22 (5) [38] 7.24 ± 5.40
Na 5100 (1) 5100 (4) [51] 5100 (4) [51] 7784 ± 2455
P 5400 (3) 3620 ± 680 (12) [44] 7700 ± 3900 (12) [52] 6847 ± 1897
S 6900 (1) 6900 ± 1100 (12)[44] 6900 ± 1100 (12) [44] 5230 ± 1525
Si - - - 337 ± 109
Sr - - - 5.56 ± 2.24
Zn 200 (44) 16.7 ± 3.5 (3) [50] 840 ± 85 (13) [53] 127 ± 73

Table 5: Median, minimum and maximum value of means of Al, B, Ba, Br, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr and Zn mass fractions (mg/kg, dry mass basis) in 
normal and cancerous prostate according to data from the literature in comparison with our results.
M: Arithmetic Mean; SD: Standard Deviation; (n)a: Number of All References; (n)b: Number of Samples.

Malignant transformation significantly changed the interrelationships 
of chemical elements in Prostate. Thus, our finding of content and 
correlation between pairs of prostatic chemical element Mass fractions, 
detailed above, indicates that there is a great disturbance of elemental 
metabolism in Prostate malignancy.
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