THE CASE OF SIMULATING THE CHOICES OF MONEY MANGERS BY APPLYING MODERN PORTFOLIO THEORY USING REAL STOCK PRICE DATA

Lihui Bai, Valparaiso University
Benjamin Dow III, Southeast Missouri State University
Paul Newsom, Valparaiso University

Abstract

Time constraints, as well as ignorance of other business disciplines, often preclude instructors from properly incorporating illustrations from outside their area of expertise into their courses. This can result in students having difficulty in applying skills learned in one course to other courses. We address this student learning issue by showing how the skills and concepts students are learning in an introductory Excel spreadsheet class can be applied to modern portfolio theory using real data from Yahoo! Finance without mathematical and statistical complexity. By using a finance illustration in an information systems course, students are better able to understand the value of the skills they are acquiring now and how these skills will help them solve real-life problems. Moreover, business students who subsequently take an introductory finance course will be familiar with one of finance's most important theories.

INTRODUCTION

Many business students have difficulty applying knowledge learned in one class to other classes, especially if the class is not in their major discipline. Professors often hear statements like the following from students, "I'm a finance major, why do I need to know something about information systems." For these students there is a no connection of how the concepts and skills learned in one class can help them solve problems in another class. In 2002 the Association of American

[^0]Colleges and Universities published a report entitled Greater Expectations: A New Vision for Learning as a Nation Goes to College that addresses this student learning issue. The report states the following "Once enrolled in College, students face ... barriers to excellence. The fragmentation of the curriculum into a collection of independently "owned" courses is itself an impediment to student accomplishment, because the different courses students take, even on the same campus, are not expected to engage or build on one another. Few maps exist to help students plan or integrate their learning as they move in and out of separately organized courses, programs, and campuses. In the absence of shared learning goals and clear expectations, a college degree more frequently certifies completion of disconnected fragments than of a coherent plan for student accomplishment." The Association of Advance Collegiate Schools of Business (AACSB International) expresses similar student learning concerns in their 2003 Eligibility Procedures and Standards for Business Accreditation. This AACSB publication promotes cross-functional integration within business programs. We address this student learning issue by showing how students can apply finance's modern portfolio theory using real data in an introductory Excel spreadsheet class.

1990 Nobel Prize winner in economics, Harry Markowitz (1952), is credited with developing modern portfolio theory. His work shows that the adage "don't put all your eggs in one basket" is sound advice. In financial terms he shows that it is possible for investors to combine financial assets (stocks) in such a way that it increases their return while also decreasing their risk. We show that students taking an introductory Excel spreadsheet course can apply his work using real stock price data from Yahoo! Finance. By using a finance application in an information systems class, students will understand how the skills and concepts they are learning in an introductory Excel spreadsheet course can help them in other classes that are often taken years later. It also introduces students to the risk-return trade-off in finance that investment and introductory finance courses cover in detail. Moreover, a number of finance textbooks use Excel to solve and illustrate problems. ${ }^{\text {iii }}$ Finally, there are a growing number of financial modeling courses at universities and a growing number of financial modeling textbooks that use Excel extensively. ${ }^{\text {iv }}$

The purpose of this paper is to show students how simple Excel functions that they commonly learn in an introductory Excel spreadsheet class can help them understand modern portfolio theory without mathematical and statistical complexity. Having students simulate the process of portfolio construction will help them better understand the decision process that money managers use in making their asset allocation decisions. Using Excel's solver and scenario manager students can
perform a risk-return analysis in little time by developing an efficient frontier and capital market line. ${ }^{v}$ First, Excel's solver is a tool that optimizes a dependent (output) variable by changing the values of independent (input) variable(s) subject to some constraint(s). Solver finds a new solution to the problem each time you change the value of the dependent variable or the value of a constraint. The solver function is a part of Excel's Solver add-in. If this function is not currently available under the Tools menu, it can be installed by loading the Solver add-in. To do this, go to the Tools menu and click Add-ins. In the Add-Ins available list, select the Solver box, and then click OK. Second, scenario manager is a tool that can store the solutions from solver. Moreover, it provides a convenient way to summarize the solutions that solver produces. In addition to solver and scenario manager, students will learn about naming cells and/or ranges, absolute and relative cell referencing, basic functions such as average, stdev, and correl, paste special with several optional features, and array formulas.

DOWNLOADING DATA AND COMPUTING RETURNS

To get free historical stock price data go to the following link http://finance.yahoo.com/. This is the home page for Yahoo! Finance. In the Market Summary section there are a number of stock indices listed, click on Dow and a new page will appear. On this page go to the More On section, click on components. This page contains an alphabetical listing of the 30 firms that comprise the Dow Jones Industrial Index with their ticker symbols. ${ }^{\text {vi }}$ As of December 14, 2005, Alcoa Inc. (symbol: AA) was the first firm. The screen should look similar to figure 1 .

Journal of Economics and Economic Education Research, Volume 9, Number 3, 2008

Clicking on the first ticker symbol, $A A$, opens AA's Yahoo! Finance home page. In the section More on $A A$ click on historical prices. In the set date range select monthly. In the start date select December 31, 2001. In the end date select December 31, 2004. Now click on Get Prices. Scroll down the page and select Download to Spreadsheet. Click on Save and in this case the ticker symbol is AA so name the file $A A$. By default the file will be saved as comma separated with the file extension .csv. Now select Open and an Excel worksheet that looks like figure 2 will appear.

Now select columns B:F by hovering the mouse over column B and holding down the left mouse button while moving the mouse over to column F. Release the left mouse button and delete these columns by right clicking the mouse and selecting delete. Next, in cell B1 enter AA Prices and in cell C1 enter AA returns.

To compute monthly stock price changes in decimals for AA select cell C2 and enter the formula $=B 2 / B 3-1$. Copy this formula down to cell C37 by selecting cell $C 2$ and hovering the pointer over the lower right corner of cell C 2 until it turns into a black plus sign. Hold down the left mouse button and drag to cell C37, then release. To save your file go to File $>$ Save As. In the file name enter $A A$ and in the Save as Type select Microsoft Excel Workbook by scrolling up. The saved file will look like figure 3.

Repeat this process for the remaining 29 stocks left in the Dow index. Remember to use the appropriate ticker symbols to name the files and for naming price and return columns within each file. To help organize the files it is probably best to create two new folders. One folder will contain .csv files with price data downloaded from Yahoo! Finance and the other folder will contain .xls files that have just dates, prices, and computed monthly stock returns.

Finally, to get a risk-free rate of return go to http://finance.yahoo.com/, enter \wedge^{\wedge} IRX in the Enter Symbol(s) area and click on GO. ${ }^{\wedge}$ IRX is the ticker symbol for the 13 -week U.S. treasury bill. Use the same start dates and end dates as before and name the .csv file using the ticker symbol when downloading the information. Now select Open and an Excel worksheet that looks like figure 4 will appear.

Delete columns B:F like before. Next, in cell B1 enter AIRX Annual Returns and in cell C 1 enter ${ }^{\wedge}$ IRX Monthly Returns. To compute monthly returns for ${ }^{\wedge}$ IRX select cell $C 2$ and enter the formula $=B 2 /(12 * 100)$. vii Copy this formula down to cell C37. To save the file go to File $>$ Save As. In the file name enter ${ }^{\wedge} I R X$ and in the Save as Type select Microsoft Excel Workbook by scrolling up. The saved file will look like figure 5.

CREATING THE MASTER RETURN FILE

Currently there are 31 Excel files and we need to create one file that contains the returns for all 30 firms in the Dow Jones and the 13-week U.S. treasury security. Start by opening Excel and select File>Save As. In the file name enter master and select save. Second, open the $A A$ file with the .xls extension and select column A. Copy column A in the AA file to the master file by selecting Edit>Copy from the menu bar and then select column A in the master Excel workbook and
paste the column by selecting Edit>Paste. Third, copy column C in the AA file to the master file by selecting Edit>Copy from the menu bar and then select column B in the master Excel workbook and paste the column by selecting Edit>Paste Special $>$ Values. Pasting values changes the formulas in this cell range to numbers. Fourth, close the AA file by going to the AA file and selecting File>Close.

For the remaining.xls files containing returns do not repeat the copy process for the dates. However, repeat the copy process for the returns of the other 29 firms and the 13 -week U.S. treasury security. For example, open the AIG file and select column C. This is the column that contains the returns for AIG. Copy column C in the AIG file to the master file by selecting Edit>Copy from the menu bar and then select column C in the master Excel workbook and paste the column by selecting Edit>Paste Special>Values. Close the AIG file by going to the AIG file and selecting File>Close. Copy the returns of the remaining 28 firms and the 13 -week U.S. treasury security. After copying the returns, the master Excel file will look like figure 6.

RETURN STATISTICS

To create the efficient frontier and capital market line we need to compute some summary statistics. In cell A38 type the label Total Return, in cell A39 type the label Annualized Return, in cell A40 type the label Std Dev of Monthly Returns, and in cell A41 type the label Annualized Std Dev. ${ }^{\text {viii }}$ To compute the total return,
select cell B38 and enter $=P R O D U C T(1+B 2: B 37)-1$ while holding down the $c t r l$ and shift buttons on the keyboard. Holding these two buttons down while hitting enter will put brackets $\}$ around the formula and this creates an array formula. Copy this formula across row 38 to cell AF38. To compute the annualized return, select cell B39 and enter $=(1+B 69)^{\wedge}(1 / 3)-1$. Copy this formula across row 39 to cell AF39. To compute the std dev of monthly returns, select cell B40 and type =stdev(b2:b37). Copy this formula across row 40 to cell AF40. Finally, to compute the annualized std. dev, select cell B41 and type $=B 40 * S Q R T(12)$. Copy this formula across row 41 to cell AF41.

To help organize the workbook, rename Sheet1 by moving the pointer over Sheet1 and right clicking the mouse. A pop-up menu will appear and select rename. Rename this worksheet by entering Returns. Likewise, rename sheet 2 to Portfolio.

EFFICIENT FRONTIER WORKSHEET-FORMATTING

To create the efficient frontier we need to enter some cell labels on the Portfolio worksheet and compute some additional statistics. Much of the work in this section involves moving between the Returns worksheet and Portfolio worksheet. We begin by entering cell labels on the Portfolio worksheet and copying statistics from the Returns worksheet to the Portfolio worksheet.

Go to the Portfolio worksheet and in cell A1 enter Asset, in cell B1 enter Annualized Std Dev, and in cell C1 enter Annualized Return. Now select the Returns worksheet and highlight cells B1:AF1 and select Edit>Copy. Go back to the Portfolio worksheet, highlight cell A2 and paste this information by selecting Edit>Paste Special. Be sure to transpose the cell range and copy values. Transposing a row of cells changes it into a column of cells. Repeat this process for the annualized standard deviation and annualized return. For example, go to the Returns worksheet, highlight the cell range B41:AF41, and select Edit>Copy. Return to the Portfolio worksheet, select cell B2 and paste this information by selecting Edit>Paste Special. Be sure to transpose the cell range and copy values. After copying the annualized return information, the Portfolio worksheet will look like figure 7 .

Next, we need to create three matrices on the Portfolio worksheet. ${ }^{\text {ix }}$ The first matrix is for stock return correlations. In cell A34 enter Correlation of Monthly Stock Returns. We first create labels for the 30 stocks in range A36:A65 by entering a formula $=A 2$ in cell A36 and then copy this formula to cell A65. Be sure that you don't copy the 13-week treasury bill returns. It is not needed for this matrix. Next,
we paste the labels we just created in the range A36:A65, a range aligned in a column, to the range C35:AE35, a range aligned in a row. We do this by selecting the range A36:A65 and then go to Edit>Copy. Next, move the cursor to cell B35, and then go to Edit>Paste Special checking two options: Values and Transpose. Figure 8 shows the results.

The second matrix is for stock return variances and covariances. In cell A67 enter Variance-Covariance of Monthly Stock Returns. Similar to the correlation matrix, two identical sets of labels for the 30 stocks need to be created in range A69:A98 and range B68:AE68, respectively. Note, the 13-week treasury bill data is not needed in this matrix either. Figure 9 shows the results.

The third matrix is needed to compute statistics for the portfolio of 30 stocks. First create labels for the 30 stocks in ranges A69:A133 and C102:AF102, respectively, using similar techniques. Next, we create weights for each of the 30 stocks in a portfolio. In cell B103 enter the label Weight. In cell B104 enter =1/30 and copy this formula to cell B133. The original portfolio is going to be equally weighted. Since there are 30 stocks in the portfolio, we will invest $1 / 30$ in each stock. To change the formulas in this cell range to values highlight the cell range B104:B133, select Edit>Copy>Edit>Paste Special, and select values. We need to change the formulas to values so that solver can find solutions in the following section. Next, we need to transpose the weights we just created in range B04:B133 to range C103:AF103. However, this time we use another technique instead of the Edit $>$ Paste Special used for the other two matrices. Again, the reason for this is that it is necessary step for solver to find solutions in the next section. The new technique uses the offset function in Excel. First, create auxiliary labels 1, 2, 3, through 30, in range C100:AF100 as follows: in cell C100 enter 1, in cell D100 enter 2, then select both cells C100 and D100 and hover the pointer over the lower right corner of cell $D 100$ until it turns into a black plus sign, hold down the left mouse button and drag to cell AF100. Next, enter the formula $=o f f s e t(\$ B \$ 103, C 100,0)$ in cell C103, and then copy the formula to AF103. You can check your formulas in the range C103:AF103 by changing a weight in the cell range $\mathrm{B} 104: \mathrm{B} 133$. For example, select cell B119. This is the weight for JNJ and it is currently set equal to 0.033333 . Change this value by entering 0.10 . Now go to cell R103 and the value should be 0.10 .

To finish labeling the Portfolio worksheet select cell A134 and enter Sum of Weights; A135, enter Portfolio Variance; A136, enter Portfolio Standard Deviation; A137, enter Portfolio Return; and A138, enter Capital Market Line. Now
that the cell labeling is finished we can proceed to computing statistics for the three matrices. Figure 10 shows the results.

Figure 10

EFFICIENT FRONTIER WORKSHEET-FORMULAS

On the Portfolio worksheet select cell B36 in the correlation matrix. To enter correlations select Insert>Function. In the search for a function area type correl, select Go, then OK. This brings-up Excel's correlation function, which is named correl. Select Array1 by moving the pointer to the spreadsheet symbol to the right of the text box and right clicking the mouse. Now select the Returns worksheet, highlight the cell range B2:B37 and hit enter. The following should appear in the Array1 text box Returns!B2:B37. Next, select Array2. Now select the Returns worksheet, highlight the cell range B2:B37, hit enter and click OK. This computes the correlation between AA and AA. To increase efficiency change the formula in cell B36 by entering dollar signs (\$). To do this, select cell B36 on the Portfolio worksheet and go to the formula. Currently the formula should read $=$ CORREL(Returns!B2:B37,Returns!B2:B37). Change the formula so that it reads $=C O R R E L(R e t u r n s!\$ B 2: \$ B 37$, Returns!B2:B37) and hit enter. Copy the formula in cell $B 36$ to the cell range $C 36: A E 36$. Repeat this process for the remaining cells. For example, select cell B37 and go to Insert>Function. The Correl function should be highlighted under the section select a function so click $O K$. If not, repeat the process above. Select Array1. Now select the Returns worksheet, highlight the cell range C2:C37 and hit enter. The following should appear in the Array1 text box Returns!C2:C37. Next, select Array2. Now select the Returns worksheet, highlight
the cell range $B 2: B 37$, hit enter, and click $O K$. Currently the formula should read $=$ CORREL(Returns!C2:C37,Returns!B2:B37). Change it so that it reads =CORREL(Returns!\$C2:\$C37,Returns!B2:B37). Copy the formula in cell B37 to the cell range C37:AE37. Repeat this process for the remaining cells. ${ }^{\text {. }}$ The cell formulas for the correlation matrix are in appendix A.

To enter the variances and covariances go to the Portfolio worksheet, select cell B69, enter the formula $=B 36 * B 2 * \$ B \$ 2$, and copy it down column B to cell B98. Next, select cell C69 on the Portfolio worksheet, enter the formula $=C 36 * B 2 * \$ B \$ 3$ and copy it down column C to cell C98. Continue entering formulas in this manner for columns D to AE. In column AE, select cell AE69, enter the formula $=A E 36 * B 2 * \$ B \$ 31$, and copy it down column AE to cell AE98. The cell formulas for the variance-covariance matrix are in appendix B.

The last matrix is the border multiplied variance-covariance matrix. We need to compute values in this matrix so that we can compute the variance and standard deviation for the portfolio. Go to the Portfolio worksheet, select cell C104 and enter $=\$ B 104^{*} C \$ 103^{*} B 69$. Copy the formula in C104 to the range C104:AF133.

To finish entering formulas into the Portfolio worksheet select cell B134 and enter $=S U M$ (B104:B133). Copy this formula across row 134 to cell AF134. The sum of weights should equal 1 in cell B134. Continue computing portfolio statistics by selecting cell B135 and entering $=$ SUM(C134:AF134). Third, select cell B136 and enter $=B 135 \wedge(1 / 2)$. Fourth, select cell B137 and enter $=\operatorname{sum}(B 104: B 133 * C 2: C 31)$ while holding down the ctrl and shift buttons. Again, holding these two buttons down while entering a formula will put brackets $\}$ around the formula and this creates an array formula. Fifth, select cell B138 and enter $=($ B137-C32)/B136. The cell formulas for the border multiplied variancecovariance matrix are in appendix C.

Finally, we will change the names of some cells. Changing the names of these cells will make it easier to interpret results later on. Go to the Portfolio worksheet and select cell B134. Just to the left of the formula bar where the formula $=\operatorname{SUM}(\mathrm{B} 104: \mathrm{B} 133)$ appears is the cell reference B134. Select this area, type weights, and hit enter. The name of this cell is now weights instead of B134. Repeat this process for the following cells: name B135 variance, B136 std_dev, B137 return, B138 CML, B32 rf_std, and C32 RF_return.

ORIGINAL PORTFOLIO

The original portfolio is equally weighted and we will save this information for this portfolio by saving it as a scenario. To do this go to Tools $>$ Scenarios and select Add. Name the scenario original portfolio and in the changing cells text box enter B104:B133. Select OK and a pop-up menu named scenario values will appear. Make sure that all values in these cells are set equal to 0.033333 and select $O K$. The scenario manager will now have a new scenario named original portfolio. Click close.

EFFICIENT FRONTIER

To use solver go to Tools $>$ Solver. In the select target cell input $\$ B \$ 135$ and in the Equal to: click Min. Cell B135 is the output (dependent) variable. In the By Changing Cells enter $\$ B \$ 104: \$ B \$ 133$. The cell range B104:B133 contain the input (independent) variables that solver will change to minimize the variance of the portfolio. Next, we need to add constraints.

To add the constraints, select Add. For the first constraint do the following. In the cell reference input $\$ B \$ 134$, select $=$, and in the Constraint input 1. Click Add. For the second constraint, enter $\$ B \$ 137$ in the cell reference, select $=$, and in the Constraint input -0.10 . Click $O K$. The solver parameters will look like figure 11.

To run solver click Solve. If solver successfully finds a solution it will return a screen similar to figure 12.

To keep the solution, select Save Scenario and name the scenario $r=-10 \%$. The save scenario screen will look like figure 13.

Click OK. We have just saved our first scenario!
To create more scenarios go to Tools>Solver and in the Subject to the constraints section select return=-0.10 and click Change. In the Constraint section enter a new return value equal to -0.075 and click $O K$. This will take you back to the Solver Parameters screen. Click Solve. Solver will find a solution and just like before select Save Scenario. Name the scenario $r=-7.5 \%$ and click OK. Repeat this process using the following return values: $-0.05,-0.025,0.00,0.025,0.05,0.075$, $0.10,015,0.20,0.25,0.30,0.325,0.35,0.375,0.40,0.50,0.60,0.70,0.80,0.90$ and 1.00 . We will graph these scenarios later.

CAPITAL MARKET LINE

To create the efficient frontier we specified a return and had solver minimize the portfolio variance by changing the weight invested in each stock. To find the best capital market line we will have solver maximize the trade-off between risk and return. To do this we need to change some inputs in the solver parameters. Go to the Portfolio worksheet and select Tools $>$ Solver. In the Set Target Cell section select cell B138, and in the equal to section select Max. Do not change the By Changing Cells section. The following should be entered in this section
$\$ \mathrm{~B} \$ 104: \$ \mathrm{~B} \$ 133$. Finally, in the subject to the Constraints section delete the return $=$ constraint. The Solver Parameters screen will now look like figure 14.

Click Solve and select save scenario. Name the scenario MAX CML.

MINIMUM VARIANCE PORTFOLIO

To compute the minimum variance portfolio select the Portfolio worksheet and go to Tools>Solver. In the Set Target Cell section select cell B135 and in the equal to section select min. The Solver Parameters screen will now look like figure 15.

Click Solve and select Save Scenario. Name the scenario minimum variance.

SCENARIO MANAGER

Scenario manager stores all saved scenarios. To access these scenarios go to Tools $>$ Scenarios and a screen that looks like figure 16 will appear.

Scrolling down the Scenarios section shows additional scenarios including the MAX CML and minimum variance scenarios. To graph these scenarios select Summary and in the Results cells input the cell range B136:B138 and the cell range B32:C32. The Scenario Summary screen will look like figure 17.

Click $O K$ and a new worksheet named Scenario Summary that looks like figure 18 will appear. This worksheet contains the information to graph the efficient
frontier, capital market line, original portfolio, and minimum variance portfolio. Positive weights are long positions and negative weights are short positions. ${ }^{\text {xi }}$

GRAPHING

To graph the efficient frontier go to Insert>Chart. In the Chart type section select XY (scatter). In the Chart sub-type section select Scatter with data points connected by smooth lines. Click Next and select the Series tab. In the series section click Remove until this section is blank. Now click Add. Select X Values, highlight the cell range F37:AB37 on the scenario summary worksheet and hit enter. Next, select Y Values, highlight the cell range F38:AB38 on the scenario summary worksheet and hit enter. Name the series by entering Efficient Frontier in the Name section.

To graph the capital market line click Add. Select X Values and while holding down the CTRL button, select cell AC40, then cell AC37 on the Scenario summary worksheet and hit enter. Select Y Values and while holding down the CTRL button select cell AC41, then cell AC38 on the Scenario summary worksheet and hit enter. Name the series Capital Market Line.
To graph the minimum variance portfolio click Add. Select X Values, then select cell AD37 on the Scenario summary worksheet and hit enter. Next, select Y Values, then select cell AD38 on the Scenario summary worksheet and hit enter. Name the series Minimum Variance Portfolio.

To graph the original portfolio click Add. Select X Values by selecting cell E37 on the Scenario summary worksheet and hit enter. Next, select Y Values by selecting cell E38 on the Scenario summary worksheet and hit enter. Name the series original portfolio. Click Next.

Finish the graph by selecting the Titles tab. In the Chart Title section enter Efficient Frontier, CML, and Min Var Portfolio, in the Value (x) axis section enter Standard Deviation, and in the Value (Y) axis section enter Return. Click Next and select as new sheet. Name the new sheet Graph and select Finish.

To extend the capital market line left click on the line to highlight it. Now right click and a screen like figure 19 will appear.

Select Add Trendline. Select the Type tab and in the Trend/Regression Type highlight Linear. Now select the Options tab. In the Trendline name section select Automatic, and enter 0.10 for forward under the Forecast section. Click OK. The graph should look similar to figure 20.

INTERPRETING THE GRAPH

The minimum variance portfolio is the mixture of risky stocks that reduces risk (standard deviation) to its lowest possible level. Every portfolio at and above the minimum variance portfolio is said to be on the efficient frontier and every
portfolio below the minimum variance portfolio is said to be on the inefficient frontier. Notice that any investor choosing a portfolio on the inefficient frontier can increase return without increasing risk (standard deviation) by moving to a portfolio that lies directly above on the efficient frontier.

The original portfolio, even though it is well diversified, is not efficiently diversified. By changing the weights invested in each stock we can significantly increase the return of the portfolio while decreasing risk.

The capital market line is the line that begins at the risk-free rate of return and "just touches" the efficient frontier. The point where the capital market line touches the efficient frontier is a special portfolio called the market portfolio. Investors at this point, have 100 percent of their funds invested in the Dow Jones index and 0 percent invested in the risk-free treasury bill. Other investors might be more risk averse and want to invest a portion of their funds in the risk-free treasury bill. They can accomplish this by lending (investing) some funds at the risk-free rate. Some investors might be so risk averse that they invest 100 percent in the riskfree treasury bill and 0 percent in the market portfolio. In this case, these investors will be at the point on the capital market line that intersects the y-axis.

Finally, notice that all investors will invest in some combination of the market portfolio and risk-free treasury bill. To illustrate this, suppose that some investor chose to invest in the minimum variance portfolio. Interestingly, this investor can increase return without increasing risk by alternatively investing X percent in the market portfolio and $(1-X)$ percent in the risk-free treasury bill, and reach a point on the capital market line that is directly above the minimum variance portfolio.

WHAT IF

Suppose the risk-free rate of return changes. For example, suppose the United States Federal Reserve performs some open market operations over a period of time that causes the current risk-free rate of $0.0133 \ldots$ in cell C32 of the Portfolio worksheet to change to 0.075 . Input the new risk-free rate in cell C32 and use solver to maximize the capital market line in cell B138 just like before. Excel will find a new solution. Save the scenario as before and give it the name NEW MAX CML to differentiate it from the original MAX CML scenario. Finally, perform a scenario summary like before. All of the original scenarios will appear plus the new one. Graph the NEW MAX CML with all of the other original information to see how the line changes.

Journal of Economics and Economic Education Research, Volume 9, Number 3, 2008

CONCLUSION

We show that the skills students learn while in an introductory Excel spreadsheet class can be applied to modern portfolio theory without mathematical and statistical complexity. By showing students how the skills and concepts they are learning in a spreadsheet class can help them to understand concepts and theories in other business disciplines (e.g. finance) we address a common student learning issue. Namely, we help students overcome a disconnect of how the concepts and skills learned in one course can help them solve problems in another course. Furthermore, it introduces business students to the fundamental risk-return trade-off in finance that investment and introductory finance courses cover in more detail. Introducing students to portfolio theory prior to taking the finance course that most colleges of business require will help them better understand this important concept. Finally, this example helps instructors of introductory Excel spreadsheet classes illustrate the value of the skills they are teaching to noninformation systems students.

TEACHING NOTES FOR THE CASE OF SIMULATING THE CHOICES OF MONEY MANAGERS BY APPLYING MODERN PORTFOLIO THEORY USING REAL STOCK PRICE DATA

CASE DESCRIPTION

As written, the audience for this case is business students who are taking an introductory Excel spreadsheet class. Nonetheless, this case can be adapted to other courses in finance and investments at the undergraduate level. Moreover, we use this case at the M.B.A. level for students who are taking a pre-requisite spreadsheet or finance course. Most of these students have non-business undergraduate degrees and have little or no spreadsheet skills or knowledge of finance theory.

This case is a 'how to' case and it simulates the process that a money manager uses in selecting assets during portfolio construction. In the introductory Excel class we cover the case over multiple weeks as topics are covered in the course. This case becomes a major student project at this level and it illustrates how the skills students learn in the course can be applied to another business discipline. In undergraduate investment and finance courses we use this case as a part of a semester project where students pick their own portfolio of stocks and get to decide their weights individually. We assign this part of the project as portfolio theory is
discussed in class. At the pre-requisite M.B.A. level we give students the case as written and have them complete the case prior to discussing portfolio theory. Since these students have little or no spreadsheet skills or knowledge of finance theory, it is helpful for these students to learn by doing.

This case has two specific learning objectives: (1) show students how the skills they learn in one course can be applied to another course, and (2) increase student spreadsheet skills and understanding of finance theory by simulating the process that money managers use in putting together a portfolio of assets.

CASE SYNOPSIS

This case places students in the role of a money manager who has the task of putting together a portfolio of stocks that will minimize risk and maximize return. Brinson, Singer, and Beebower (1991) show that asset allocation accounts for over 90 percent of the variation in portfolio returns. Thus, portfolio construction and management is one of the most important financial concepts. This case shows students how to construct a portfolio of stocks using real data from Yahoo! Finance.

ENDNOTES

iv Examples include Spreadsheet Modeling in Corporate Finance by Holden, Spreadsheet Modeling in Investments by Holden, Financial Analysis with Microsoft Excel 2002 by Mayes and Shank, and Financial Modeling Using Excel and VBA by Sengupta.
v We will explain these terms later in the paper.
vi Excel's scenario manager can handle up to 32 stocks in a portfolio. Beyond 32 stocks, Excel issues an error message.
vii The Adj. Close* column for stocks is a stock price whereas the Adj. Close* column for the 13 -week U.S. Treasury bill is an annualized return in percent, not a bond price. One method to compute a monthly return for the bond is to divide the Adj. Close* column by 12 and to change the return from percent to decimal by dividing by 100 .
viii Students should be familiar with arithmetic averages and standard deviations from a math course in high school or a finite math or business statistics course in college. This further emphasizes how skills learned in one class are used in another.

Journal of Economics and Economic Education Research, Volume 9, Number 3, 2008
ix Students should be familiar with matrices from their finite math course. The use of matrices in this project further emphasizes how skills learned in one class are used in another.
x Adding a dollar sign in front of a row or column index makes the reference to that row or column absolute instead of relative. In this case, without using dollar signs in the formulas for the correlation matrix, we would have to go through this process 900 times (30×30). Using dollar signs reduces this number to only 30 !
xi Shorting is a process where investors sell stock by borrowing it from another investor, then replace the borrowed stock at a later date by buying it in the market, hopefully at a lower price.

REFERENCES

Association of Advance Collegiate Schools of Business (AACSB International). 2003. Eligibility Procedures and Standards for Business Accreditation. St. Louis, MO: AACSB International.

Association of American Colleges and Universities. 2002. Greater Expectations: A New Vision for Learning as a Nation Goes to College. Washington, DC: Association of American Colleges and Universities.

Bodie, Zvi, Marcus Kane, and Alan J. Marcus, Essentials of Investments, Fifth Edition, McGraw Hill, 2004.

Bodie, Zvi, Marcus Kane, and Alan J. Marcus, Investments, Sixth Edition, McGraw Hill, 2005.

Brigham, Eugene F. and Joel F. Houston, Fundamentals of Financial Management, Concise Fourth Edition, Thomson, 2004.

Brigham, Eugene F. and Phillip R. Daves, Intermediate Financial Management, Eighth Edition, Thomson, 2004.

Brinson, Gary, Brian Singer, and Gilbert Beebower, Determinants of Portfolio Performance, Financial Analysts Journal, May/June 1991.

Holden, Craig W., Spreadsheet Modeling in Investments, First Edition, Prentice Hall, 2002.
Holden, Craig W., Spreadsheet Modeling in Corporate Finance, First Edition, Prentice Hall, 2002.

Journal of Economics and Economic Education Research, Volume 9, Number 3, 2008

Markowitz, Harry, Portfolio Selection, Journal of Finance, March 1952, volume 7, 77-91.

Mayes, Timothy R., and Todd M. Shank, Financial Analysis with Microsoft Excel 2002, Third Edition, Thomson, 2004.

Merton, Robert C., An Analytic Derivation of the Efficient Portfolio Frontier, The Journal of Financial and Quantitative Analysis, September 1972, volume 7, 1851-1872.

Reilly, Frank K., and Keith C. Brown, Investment Analysis and Portfolio Management, Eighth Edition, Thomson, 2006.

Sengupta, Chandan, Financial Modeling Using Excel and VBA, First Edition, Wiley, 2004.

ECONOMICS ARTICLES

[^0]: Journal of Economics and Economic Education Research, Volume 9, Number 3, 2008

