Tdm: Optimizing dosing, improving patient outcomes.

Lucia Romano*

Department of Therapeutics, University of Milan, Milan, Italy

Introduction

This systematic review delves into therapeutic drug monitoring (TDM) and dose optimization strategies for biologic agents used in inflammatory bowel disease (IBD). It highlights the variability in patient response and metabolism, emphasizing how TDM guides personalized treatment. The review details the efficacy of proactive versus reactive TDM, especially for anti-TNF agents, demonstrating improved clinical outcomes and reduced healthcare costs when drug levels are routinely monitored and doses adjusted accordingly. This approach helps maintain drug concentrations within therapeutic windows, preventing both sub-therapeutic levels leading to disease flares and excessive levels that increase adverse event risk [1].

This scoping review examines the landscape of therapeutic drug monitoring (TDM) for immunosuppressants in solid organ transplant recipients. It underscores TDM's critical role in optimizing dosing, balancing efficacy and toxicity, particularly for drugs like tacrolimus and cyclosporine. The review emphasizes the need for individualized strategies, considering pharmacokinetic and pharmacodynamic variability among patients. It also points to advancements in analytical methods and the emergence of precision medicine approaches to further refine TDM practices, aiming to improve long-term graft survival and patient quality of life [2].

This article addresses practical challenges in implementing therapeutic drug monitoring (TDM) in routine clinical practice. It points out common hurdles such as difficulties in sample collection and handling, turnaround times for laboratory results, and the interpretation of complex pharmacokinetic data by clinicians. The authors stress the importance of clear guidelines, improved communication between labs and clinical teams, and enhanced training for health-care professionals to maximize TDM's utility. Overcoming these barriers is crucial for TDM to reach its full potential in personalizing patient care and improving therapeutic outcomes [3].

This review explores the utility of therapeutic drug monitoring (TDM) for antipsychotics, specifically in patients experiencing early psychosis. It discusses how individual variability in drug metabolism, often influenced by genetic factors, impacts treatment response and side effects. TDM provides an objective measure to guide dose adjustments, aiming to optimize therapeutic efficacy

while minimizing adverse drug reactions. The article suggests that TDM can be a valuable tool in personalizing treatment plans, potentially improving adherence and long-term outcomes for this vulnerable patient population by ensuring drug levels are within an optimal therapeutic window [4].

This review explores the convergence of therapeutic drug monitoring (TDM) and Artificial Intelligence (AI), highlighting how AI can revolutionize TDM practices. It discusses AI's potential in predicting individual pharmacokinetic profiles, optimizing dosing regimens, and interpreting complex patient data more effectively than traditional methods. The authors explain how machine learning algorithms can analyze vast datasets, including genetic information, comorbidities, and concomitant medications, to provide highly personalized dosage recommendations. This integration aims to improve therapeutic outcomes, minimize adverse effects, and make TDM more precise and accessible in clinical settings [5].

This article examines the expanding role of therapeutic drug monitoring (TDM) in personalized oncology. It explains how TDM is becoming increasingly vital for optimizing dosing of targeted therapies and chemotherapeutics, where individual pharmacokinetic variability significantly impacts treatment efficacy and toxicity. The authors highlight specific examples where TDM helps navigate narrow therapeutic windows, reducing severe adverse events while ensuring adequate drug exposure for tumor control. This approach moves beyond 'one-size-fits-all' dosing, aiming to tailor drug regimens to each patient's unique metabolic profile and disease characteristics, ultimately improving patient outcomes in cancer treatment [6].

This article focuses on therapeutic drug monitoring (TDM) of antimicrobial agents specifically in pediatric patients. It underscores that children's unique physiological differences, including variable organ maturation and body composition, significantly impact drug pharmacokinetics, making standard adult dosing regimens inappropriate. TDM, in this context, is crucial for optimizing antimicrobial efficacy while minimizing toxicity, especially for drugs with narrow therapeutic windows like aminoglycosides and vancomycin. The review highlights how TDM helps tailor doses to achieve desired drug exposures, ensuring effective treatment of infections and preventing adverse effects in this sensitive population [7].

*Correspondence to: Lucia Romano, Department of Therapeutics, University of Milan, Milan, Italy. E-mail: lucia.romano@unimi.it

Received: 01-Aug-2025, Manuscript No. aajcrp-188; **Editor assigned:** 05-Aug-2025, Pre QC No. aajcrp-188 (*PQ*); **Reviewed:** 25-Aug-2025, QC No. aajcrp-188; **Revised:** 03-Sep-2025, Manuscript No. aajcrp-188 (*R*); **Published:** 12-Sep-2025, DOI: 10.35841/aajcrp.7.3.188

This article explores the synergistic integration of therapeutic drug monitoring (TDM) and pharmacogenomics (PGx) as a powerful approach to precision medicine. It highlights how genetic variations can significantly influence drug metabolism and response, leading to inter-individual variability in drug levels and therapeutic outcomes. By combining TDM, which measures actual drug concentrations, with PGx data, which predicts potential metabolic pathways, clinicians can achieve a more nuanced understanding of patient-specific drug handling. This combined strategy allows for highly individualized dosing adjustments, optimizing drug efficacy, minimizing adverse effects, and moving closer to truly personalized therapeutic interventions [8].

This review explores the emerging field of point-of-care testing (POCT) for therapeutic drug monitoring (TDM). It highlights how POCT can overcome traditional TDM limitations, such as long turnaround times and complex logistics, by providing rapid results closer to the patient. The authors discuss various POCT platforms and technologies, emphasizing their potential to facilitate immediate clinical decision-making and dose adjustments, particularly in critical care or emergency settings. While acknowledging challenges related to accuracy and standardization, the article underscores POCT's promise in making TDM more accessible, efficient, and responsive to immediate patient needs, thus improving personalized medicine delivery [9].

This practical guide offers clinicians insights into therapeutic drug monitoring (TDM) for various antibiotics and antifungals. It emphasizes the importance of TDM in optimizing dosing for anti-infectives with narrow therapeutic windows, significant pharmacokinetic variability, or in critically ill patients. The authors provide specific recommendations for agents like vancomycin, aminoglycosides, and voriconazole, outlining target concentrations, timing of sample collection, and interpretation of results. The article highlights how TDM helps clinicians achieve optimal drug exposure, thereby enhancing treatment effectiveness and reducing the risk of toxicity and the development of antimicrobial resistance, particularly in complex clinical scenarios [10].

Conclusion

Therapeutic Drug Monitoring (TDM) is a cornerstone of personalized medicine, aiming to optimize drug dosing and improve patient outcomes across diverse clinical settings. It addresses significant inter-individual variability in drug metabolism and response, which can be influenced by genetic factors and physiological differences. TDM proves critical in managing complex conditions like inflammatory bowel disease (IBD) with biologic agents, ensuring drug levels remain within therapeutic windows to prevent disease flares and reduce adverse events. Similarly, for solid or-

gan transplant recipients, TDM is vital for immunosuppressants like tacrolimus and cyclosporine, balancing efficacy with toxicity to improve graft survival. The utility of TDM extends to guiding dose adjustments for antipsychotics in early psychosis, enhancing adherence and long-term outcomes. In specialized areas like oncology, TDM customizes dosing for targeted therapies, navigating narrow therapeutic windows to maximize tumor control while minimizing severe side effects. For vulnerable populations, such as pediatric patients, TDM of antimicrobial agents is indispensable due to their unique pharmacokinetic profiles, ensuring effective treatment without toxicity. Challenges in TDM implementation, including sample logistics and data interpretation, require clear guidelines and improved communication. Yet, the future of TDM looks promising, with advancements integrating Artificial Intelligence (AI) for predictive dosing, Pharmacogenomics (PGx) for a deeper understanding of drug handling, and Point-of-Care Testing (POCT) for rapid, accessible results. These innovations aim to make TDM more precise and widely available, truly personalizing therapeutic interven-

References

- Bart V, Eva D, Ann O. Drug monitoring and dosage optimization of biologics in inflammatory bowel disease: a systematic review. *Aliment Pharmacol Ther*. 2020;51:305-321.
- Vidhya A, Satheesh K R, Venkatesan A. Therapeutic Drug Monitoring of Immunosuppressants After Solid Organ Transplantation-A Scoping Review. Front Pharmacol. 2022;13:843343.
- 3. Robin K, Dirk V D M, Roderik V. Challenges in the Application of Therapeutic Drug Monitoring in Clinical Practice. Ther Drug Monit. 2021;43:15-18.
- Dagfinn R, Olav S, Helle C. Therapeutic Drug Monitoring of Antipsychotics in Early Psychosis. Curr Pharm Des. 2021;27:2790-2800.
- Damian C, Tomasz K, Anna S. Therapeutic drug monitoring and artificial intelligence: a review on the state-of-the-art and future perspectives. *Expert Rev Clin Pharmacol.* 2023;16:307-318.
- Christian S, Eva M, Christine W. The Role of Therapeutic Drug Monitoring in Personalized Oncology. Cancers (Basel). 2022;14:5975.
- 7. Andreas H G, Verena S, Bernhard W. Therapeutic drug monitoring of antimicrobial agents in pediatric patients. Expert Rev Anti Infect Ther. 2020;18:167-184.
- Patrícia L, Albert C, Conceição M C. Therapeutic drug monitoring and pharmacogenomics: An approach to precision medicine. Front Cardiovasc Med. 2023;10:1162383.
- 9. Lara Z, Mohammad S, Dima B. Point-of-care testing for therapeutic drug monitoring. *J Clin Pathol.* 2023;76:205-212.
- Mohammad H A, Reem A H, Sarah A R. Therapeutic Drug Monitoring of Antibiotics and Antifungals: A Practical Guide for Clinicians. Antibiotics (Basel). 2023;12:292.

Citation: Romano L. Tdm: Optimizing dosing, improving patient outcomes. aajcrp. 2025;08(03):188.

aajcrp, Volume 8:3, 2025