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Abstract

Continuous non-invasive monitoring of blood pressure is essential for cardiovascular risk patients. This
article presents the sparse characterization of Photoplethysmogram (PPG) using K-SVD technique for
beat-to-beat blood pressure estimation. The relative changes in the blood volume that is represented by
PPG is influenced by the pressure changes in the peripheral circulation. Owing to the anomalous nature
of the time domain features obtained from ECG and PPG, we propose the use of sparse representation
as means of feature extraction method. The sparse features generated from K-SVD processed dictionary
that can approximate the shape of the PPG signal were taken as the features to predict the BP values.
The proposed system is evaluated using the Multi-Parameter Intelligent Monitoring for Intensive Care
(MIMIC-II) database. The proposed method is compared with the baseline system that employs time
domain features for BP prediction. The Mean Absolute Error (MAE) and Root mean square Error
(RMSE) between the predicted BP and ground truth BP were chosen as the performance measures. The
system achieved the error measure of (MAE ± RMSE) 5.06 ± 6.27 mmHg for systolic BP and 2.99 ± 3.93
mm Hg for Diastolic BP. Further, the comparison studies suggests that the proposed system outperforms
the baseline system with an overall reduction in MAE and RMSE by 20.55% and 22.14% respectively
for systolic BP and 28.15% and 23.48% respectively for Diastolic BP. Hence, the sparse representation of
PPG can be successfully utilized for the beat-to-beat prediction of BP.
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Introduction
The condition of elevated Blood Pressure (BP), also known as
hypertension is one of the dominant risk factors that is
associated with Cardiovascular Diseases (CVD) and chronic
kidney disease (CKD). The behavioural risk factors namely the
physical inactivity, unhealthy lifestyle, etc., contributes to the
impact of CVDs in individuals. One of the objectives of the
global Non-communicable Disease (NCD) adopted by World
Health Assembly in 2013 is to reduce the prevalence of
hypertension, defined as systolic BP of 140 mmHg or higher or
diastolic BP of 90 mmHg or higher by 25% by 2025 [1]. The
early intervention of elevated blood pressure can influence the
behavioural risk factors which greatly reduces the
cardiovascular risk.

The mercury based sphygmomanometer has been the gold
standard instrument for measuring the BP, utilizing the arm
cuff inflation followed by deflation procedure to measure the
systolic BP and diastolic BP values based on the korotkoff’s
sounds. The state of the art in BP measurement extends to
oscillometric principle based automated devices for its use in
intensive care units (ICUs), home and offices that measures BP
at intermittent intervals preferably for every 15 min. The time
gap between the successive readings was to avoid the

uneasiness experienced by the individuals during inflation and
the consequently the artery occlusion. It also holds a limitation
of non-availability of beat-to-beat BP monitoring which is
highly essential for the timely assessment of hypertensive
patients. The monitoring of blood pressure variations in very
short term (beat-to-beat) and short term (minutes to hours)
seeks more attention for hypertensive patients as it gives signs
for the progressive target organ damage [2]. The blood
pressure variability measurement requires implementations of
continuous bear-to-beat BP recording devices. The primarily
available system for continuous BP monitoring was invasive
technique that employs cannula insertion into the artery, widely
used in surgical units to monitor the rapid BP fluctuations. In
1967, Czech physiologist Prof. J Peñáz introduced the volume
clamp technology that measure the finger arterial pressure
using IR plethysmograph-finger cuff setup. The Finapres
systems were developed based on the technology that takes the
regulated cuff pressure as arterial pressure, maintaining the
constant blood volume under the cuff [3]. In spite of its small
size, limitations like larger data processing system, motion-
sensitivity instability outside the clinical setting and need for
calibration with upper arm cuff makes it unreliable for
monitoring BP during normal day-to-day activities.
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Review of the related works
A number of researchers have carried out their study on the
Pulse Wave Velocity (PWV) as indirect means for BP
measurement [4]. The PWV, velocity of the pulsating pressure
waves results from the changes in the blood pressure. Though
PWV is a function of arterial stiffness and enables for
continuous BP monitoring, its accuracy rests on the site of
measurement as the relation between PWV and BP hold good
only if it is measured in the central aortic arteries. One possible
way to get over this difficulty was to measure the time taken
for the arterial wave to propagate between two substitute
arterial locations, also known as pulse transit time (PTT), as it
indirectly represents the velocity of the pulsating wave [4,5].
The relation between the PWV and PTT are based on the
Moens Korteweg Equation (1)

��� = ���� = ��0����� (1)
The parameter D is the distance between two arterial locations
and the parameters a, E0, ρ, d and P denotes the arterial wall
thickness, initial elastic modulus, blood density, diameter and
the blood pressure. Few studies have confirmed the
relationship between PTT and BP in various conditions [6-8].
McCarthy et al., studied the effects of PTT as biomarker of BP
and stated that the relation holds good for shorter time periods
beyond which requires re-calibration [6]. Choi et al., proposed
the method of multi-innovation recursive least squares to
update the system parameters that extends the time of
recalibration [7]. Payne et al., analysed the effects of vaso-
active drugs in the PTT-BP relationship and found it to be
relatively unaffected [8]. However, PTT represents only certain
characteristics of the complex cardiovascular events induced
by BP fluctuations. The linear regression models based on PTT
to estimate BP outperforms for only a short period of time
beyond which requires calibration with the reference BP from
standard BP devices. These models illustrates the stronger
dependence of BP with respect to PTT but fails to operate for
long-term BP monitoring.

PTT is associated with arterial stiffness that increase with
aging and more prominent in chronic hypertensive patients [9].
But the hemodynamic phenomena like the vascular
distensibility, peripheral vascular resistance have not been
considered. These details are closely related to the
morphological shape of Photoplethysmogram but it has been
very less analysed [10]. The variations in the physiological
parameters, arterial elastic modulus, wall thickness, blood
density and the diameter do contribute to the magnitude of BP
and the vice versa. The pressure at which the blood is pumped
along the arterial line is responsible to the amount of blood
volume present in the capillaries for a particular instant of
time. The blood volume as a function of time indirectly
depends on the physiological parameters and the blood
pressure. The photoelectric plethysmogram also known as
photoplethysmogram (PPG) typically characterises the blood
volume changes with respect to time. The deeper
understanding and exploration of the shape of the

photoplethysmographic waveform can give more insights
about the blood pressure and other influencing factors.

Figure 1. Photoplethysmogram with distinctive features.

The Photoplethysmography is a simple, optical based
diagnostic tool that presents the structural and functional
information of peripheral and central circulation. The uses of
photoplethysmography was originally illustrated by Alrick
Hertzman in 1937 based on previous observations and
principles that PPG measures the fullness of the tissue by
measuring the light absorption when illuminated by a light
[11]. Figure 1 shows the typical photoplethysmogram (PPG)
waveform where primary peak (systolic peak) refers to the
systolic phase and the secondary peak (diastolic peak) refers to
the diastolic phase of the cardiac cycle. Though the primary
application of the PPG is to compute the oxygen saturation in
the tissues from light absorption of LED and IR light, the
studies has suggested that the detailed analysis of the pulse
wave can yield functional information on the cardiovascular
system [12]. The pulse rate calculated from the time interval
between two systolic peaks is alternative for heart rate
calculated from ECG. The BP prediction systems developed
from the features extracted from the PPG alone have shown
considerable reduction in the error between the actual and the
estimated BP values. Some of the studies where the time
domain physiological features like systolic amplitude [13],
autoregressive coefficients, energy profile and heart rate
statistics [14], and magnitude and phase values of 4 specific
frequencies of the PPG signal [15] were employed and
considerable accuracy was achieved.

Unfortunately, the work presented in the literature produces
incorrect results because of the inaccuracy in the extracted
features. The slightest variations in the shape of the PPG
because of the motion artifacts results in features that are noisy
and erroneous. Since the features are checked manually on
very few training data and there are no other specific ways to
check the authenticity and the correctness of the features, this
introduces outliers (inaccurate feature values) in the whole of
training data that alters the learning process of the machine
learning algorithm employed to estimate BP. Though some
outliers can be removed statistically, it also ends up removing
the crucial data points that can contribute to the system. All of
the previously mentioned works relies on data that are clean
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and devoid of motion artifacts. The other issue is that the
frequency domain features presented in [15] focusses on
certain frequencies which gives same range of feature values
making it difficult and trivial for the learning algorithms to
estimate the correct BP range. Therefore, we need to explore
diverse yet significant features that can overcome the above
issues.

As an alternative to the above existing methods, this article
focusses on new type of features that can be extracted from
PPG for beat-to-beat BP Prediction. Sparse coding is one of the
evolving techniques in signal processing that can represent a
given input signal in terms of weighted sum of the dictionary
atoms or dictionary elements. The sparse coding is employed
in number of applications like compression, denoising, feature
extraction and regularization, and more [16]. The objectives of
this study is to verify that the sparse coefficients of PPG
generated from over complete bases dictionary can be used for
the beat-to beat prediction of BP. This study is also focused on
comparison of the performance of the proposed system to that
of the native baseline system that utilises the mathematically
engineered features for continuous beat-to-beat BP monitoring.

Sparse representation
Sparse technique represents the given signal Si as weighted
sum of the bases derived from the over-complete dictionary.
The dictionary D is a codebook that consists of K dictionary
elements that determines the approximation of the given signal
in a specific domain. Given the dictionary D={D1, D2,......DK}
the method aims at representing the signal Si as the weighted
sum of the elements from the dictionary D.�� = ∑� − 1� ����� = 1, 2, ...� (2)
Here A={A1, A2,...AK} correspond to sparse coefficients.
Vector Quantisation (VQ), Principal Component Analysis
(PCA), Independent component Analysis (ICA) are some of
the well-known techniques of this kind [16]. The nature of the
dictionary depends on the function defining the dictionary and
the completeness of the dictionary. The simplest method of
defining the dictionary is by use of pre-defined transform
functions which includes Discrete Cosine Transform (DCT),
wavelets, Short Time Fourier Transform (STFT), and wavelets.
The alternative method is to train the randomly initialised
dictionary with the data of our interest. The term ‘Sparsity’
defines the presence of few non-zero coefficients and other
being zero in the sparse vector. It implies that very few signal
dictionary elements from the dictionary can give succinct
representation of the data. Though over-complete dictionaries
are able to find the inherent nature of the signal, the
coefficients are no longer unique and are uncorrelated for a
given input data. Thus the constraints of sparsity are introduced
in learning process. It is given by

min� � 0�������� �� � = �� (3)
min� � 0�������� �� � − �� ≤ � (4)
||A||0 gives the l0 normalization of sparse vector A. It yields the
count of the non-zero entries in A [16]. The l0 optimization is
helpful in finding the sparsest solution for underdetermined
linear systems. The sparsest solution refers to lowest l0-norm
i.e., fewest non-zero entries in A. The concept of sparsity and
over-complete dictionaries can finds its use in feature
extraction as the sparse coefficients generated from the
designed dictionary can be used as feature vector for various
classification and regression problems.

K-SVD based dictionary learning process
The K-means Singular value Decomposition (K-SVD)
technique is an algorithm for designing the dictionary of over-
complete bases that is solely based on the input data of our
interest [16]. The dictionary learning process in K-SVD is
composed of the sparse coding step and the dictionary updation
step. Given the randomly initialised dictionary D, the sparse
coding step finds the sparse coefficients using Orthogonal
Matching Pursuit (OMP) algorithm, whereas the dictionary
updation step decomposes the matrix DA into k rank-1
matrices by selecting dictionary element Dk and its
corresponding vector Ak based on the following constraint

� − �� �2 = � − ∑� − 1� ����� �
2

= (� − ∑� − 1� �����)− ����� �
2

� − �� �2 = (��− �����) �2
(5)

Here Ek corresponds to the overall error representation without
Dk and its corresponding vector Ak. The SVD is computed for
Ek that yields UΔVT. where the first column of U gives the
updated dictionary atom Dk and the first column of V
multiplied by Δ(1, 1) gives the coefficient vector Ak

T

corresponding to atom Dk [17]. Therefore, the SVD is
performed K times to complete K-dictionary elements
dictionary.

The Orthogonal Matching Pursuit (OMP) is iterative algorithm
that selects the dictionary elements at each step that are highly
correlated with the input data or its residual. Unlike the other
matching pursuit algorithms, the OMP computes the
orthogonal projection of the signal from the dictionary
elements of updated dictionary [18]. The OMP generates the
sparse coefficients by projecting the given input signal data in
a space spanned by the dictionary elements in the updated
dictionary.
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Figure 2. Process flow of the proposed system.

Sparse coding of training and testing signals
To achieve the objective of BP prediction on beat-to-beat basis,
the PPG signal of each cardiac cycle is considered over a
signal frame of fixed interval. The Figure 2 shows the process
flow of the proposed system. The starting point of each pulse
wave is obtained and the signal between two start points is
taken as PPG signal frame. Each frame is resampled to fixed
length to form the training signal matrix Strain of size N × Mi
where N is the PPG frame length and Mi is the number of
training samples. The Strain and the randomly initialized
dictionary D of size N × K are fed to the K-SVD to get the
updated dictionary DKSVD. Here K is the number of dictionary
atoms in D. The OMP algorithm projects each PPG frame si
from the matrix Strain onto the subspace spanned by the
dictionary DKSVD. The resulting sparse coefficient vector for
each training signal is of size Kx1 having maximum of Ai non-
zero values. Therefore the sparse coefficient vector is taken as
the feature vector to represent the PPG signal frame in both
training matrix Strain and testing matrix Stest (of size N x Mj,
Mj is the number of testing samples) The above mentioned
process is implemented followed by the training of the system
using regression model. The model is then employed to
estimate the systolic and diastolic BP.

Material and Methods

Dataset description
To test and evaluate the performance of the proposed system,
we employ the Multi-Parameter Intelligent Monitoring for
Intensive Care (MIMIC -II) dataset that consists of

simultaneously recorded ECG, PPG and the arterial blood
pressure (ABP) waveform [19]. In particular, we use the
MIMIC-II Waveform Matched Subset Database as it has its
corresponding clinical database linked to it. The clinical
database has the demographic details and the clinical history of
the subjects. A total of 105 out of 2850 subject records (35
females, 70 males) that has synchronized ECG, PPG and ABP
waveforms, marked with essential hypertension were taken for
our study. The training and testing dataset consists of 73 and 32
records respectively. The demographic characteristics of the
dataset is listed in the Table 1. The characteristics of the dataset
is of those waveform data matched with the available clinical
data and other patient relevant details.

Table 1. Demographic characteristics of the dataset.

Characteristics Training Data Testing Data p-value

Sex (Males) % 49 (67%) 21 (65%) NS

Age (Years) 65.74 ± 16.52 65.34 ± 12.97 NS

Height (cm) 168.46 ± 13.19 172.53 ± 8.07 NS

Weight (Kg) 94.68 ± 29.66 93.06 ± 17.86 NS

SOFA Scores 10.56 ± 5.91 10.56 ± 5.91 NS

Systolic BP 116.42 ± 22.5 108.9 ± 20.13 NS

Diastolic BP 57.83 ± 12.84 59.92 ± 12.55 NS

NS: Not Significant; SOFA: Sequential Organ Failure Assessment

The ABP waveform data from the database is the continuous
invasive BP measurement where in the single pressure wave,
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the maximum peak value corresponds to systolic BP and the
following base value corresponds to diastolic BP. The
placement of sensors along the arterial line takes the order of
blood pressure invasive equipment followed by the pulse
oximetry probe. Therefore, the ABP waveform follows the
PPG waveform. As seen in the Figure 3, the BP value follows
the normal distribution with 95% Confidence intervals (μ ±
1.96 σ) of 107 ± 39 mmHg for systolic BP and 59 ± 23.12
mmHg for diastolic BP.

Figure 3. Histogram with Fitted Distribution (a) Systolic BP (b)
Diastolic BP.

System setup
The denoising of the PPG signal is performed using the
algorithm in [20] and the peak detection adopted from [21]
with adjustments in the filter design suitable for the signal. The
foot point or pulse arrival point was determined with respect to
the peaks. The signal data between 2 foot points was taken as
one signal frame. To ensure that the size of the frame is fixed
as the cardiac period varies, each signal frame was resampled
to length of 100 samples. Therefore, the training signal set
consisted of 5792 signal frames (5792 × 100) and testing signal
set of 2588 frames (2588 × 100).

The dictionary is said to be over-complete only if the number
of dictionary dictionary elements is greater than the length of
the signal frames. The dictionary was randomly initialized with
the size of 100 × 500. Here 500 correspond to the number of
dictionary dictionary elements to be processed to get the
learned dictionary. The training signal set and the dictionary D
is fed to the K-SVD with the number of iterations and level of
sparsity set to 30 and 25 respectively. It results in updated
dictionary Dksvd. The OMP algorithm projects each signal
frame spanned by Dksvd resulting in the sparse vector of size
500x1 with maximum of 25 non-zero coefficients. This forms
the training feature set (size of 5792 × 500) and the testing set
(2588 × 500).

Regression modelling
The beat-to-beat estimation of BP is considered as the
regression problem with features to predict the value of BP.
The linear and non-linear regression models must be analyzed
to determine which of the available machine learning algorithm
suits best for our proposed features. This article focusses on 4
main types of regression algorithm.

1. Linear regression of the form Y=a+bX where X is
explanatory or predictor variable and Y is dependent variable.
Though most of the real time regression problems are non-

linear, they are simple, less susceptible to overfitting and
requires less training samples.

2) Neural networks: One of the most commonly used
machine learning algorithm that consists of network with input
layer, hidden layer and the output layer. The output from one
layer becomes the input to the following layer of nodes. Each
nodes has weights based on the input-output relation and the
weights are optimized by back propagation algorithm with
respect to the reference target values. Our system is trained
with input layer of 500 nodes, a hidden layer with 10 nodes
and output layer with 2 nodes (one node corresponds to
systolic BP and the other to diastolic BP).

3) Support vector regression: One of the supervised learning
algorithm that is similar in function to neural networks. It form
a hyperplane or a set of hyperplanes that maximizes the margin
and minimize the error. The libSVM library [22] is used to
develop the regression model with Radial Basis Function
(RBF) kernel, with the epsilon and gamma value selected by
cross-grid search (ε=5, γ=0.125 for SBP and ε=4, γ=0.25 for
DBP).

4) Random forests: An ensemble technique which consists of
n number of learners connected together to form single
regression tree. The prediction from the each learner is
combined to get the final prediction. It is advantageous to
decision trees by being less prone to overfitting and less
variance. Our system is developed with 100 base learners.

Evaluation protocol
The evaluation of the predicted BP values is performed by
computing two main measures. One is the Mean Absolute error
(MAE), (error between the reference BP and the predicted BP)
and Root Mean Square Error (RMSE). The MAE and RMSE is
computed using the equation 6 and 7.��� = 1� ∑� = 1� ��− �� (6)
���� = 1� ∑� = 1� ��− �� 2 (7)
The yi is the reference BP value and ŷi is the BP value
predicted from the system. The MAE and the RMSE in units of
same as that of blood pressure (mmHg) gives the measure of
how far the prediction system is better compared to the existing
methods. The results reported are based on the evaluation
performed on the test dataset.

Results
Table 1 lists the statistical analysis on the demographic data is
done using Student’s t-test. The p-value for all the entries were
greater than 0.05 signifying there is no much significant
difference between the two groups (training and testing
dataset), making it appropriate for the testing of the system.
The sparse coefficients from the training signal frames and
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their corresponding BP values were given as input and targets
for training the model.

Table 2. Comparison of models for BP prediction for systolic and
diastolic BP.

Regression Models
Systolic BP (mmHg) Diastolic BP

(mmHg)

MAE RMSE MAE RMSE

Linear Regression 19.45 25.24 10.69 13.62

Neural Networks 19.12 24.58 10.54 13.62

SVR 19.01 24.17 11.15 14.07

Random Forests 17.08 21.73 10.77 13.27

MAE: Mean Absolute Error; RMSE: Root Mean Square Error

Figure 4. Visualization of beat-to-beat blood pressure measurements
for the record s01840.

The models were formed using 4 algorithms namely the
multiple linear regression, the neural networks, the Support
Vector Machines (SVR) and the Random forests as per the
specified parameters with 10-fold cross validation. The
performance of the regression models are assessed using the
testing dataset (sparse coefficients from test signal frames) in
terms of MAE and RMSE and is listed in the Table 2. The
values mentioned are the results obtained for the overall test
data. The performance measures suggests that the random
forests performs best among the implemented systems with the
minimum error both for Systolic and Diastolic BP. The less
variance property and ensembling of many learners in random
forests makes the prediction better than other systems. The
association for the Advancement in Medical Instrumentation
(AAMI) suggested the standards AAMI-SP10 to clinically
investigate the automated BP measurement systems. According
to AAMI, the mean error in absolute less than 5 mmHg and the
root mean square error less than 8 mmHg is considered to be
clinically acceptable. In order to verify the use of updated
sparse dictionary DkSVD on subject-wise basis, a random forest
model was developed with sparse coefficients of first 1 minute
PPG signal frame (one-time calibration) and tested on the data
of 10 min signal frames. The mean absolute error and root
mean square error for each individual (32 subjects in the test
dataset) using the random forests model is been listed in Table
3. It can be understood that except for some, the MAE ±
RMSE for all other subjects fall within the specified range of 5
± 8 mmHg for both systolic and Diastolic BP. The MAE and
the RMSE averaged overall the test data is 5.06 and 6.27
mmHg respectively for systolic BP and 2.99 and 3.93 mmHg
respectively (Figure 4).

Table 3. Error measures of individual records after one-time calibration averaged over 10 min.

Record No.
Systolic BP (mmHg) Diastolic BP (mmHg) Record No. Systolic BP (mmHg) Diastolic BP (mmHg)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

s00618 7.82 8.57 5.48 6.17 s04906 2.3 2.82 1.89 2.79

s00946 3.66 6.89 3.75 8.82 s05937 2.54 3.01 0.95 1.18

s01004 6.32 7.51 2.1 2.53 s06116 3.3 3.9 2.86 3.24

s01501 1.74 2.05 1.3 1.54 s06158 10.26 12.13 3.77 4.52

s01501 3.32 4.01 1.49 2.03 s06692 3.75 4.75 2.93 3.76

s01840 4.28 6.13 1.89 2.67 s06875 2.47 3.34 1.55 2

s01840 1.6 2.01 0.97 1.18 s07251 1.38 1.7 1.44 1.81

s01855 15.9 18.94 11.94 15.94 s07251 4.8 6.45 2.2 2.94

s02458 9.93 11.37 3.05 3.9 s07415 2.54 3.18 3.6 4.27

s02586 2.87 3.59 1.71 2.25 s07614 5.46 7.14 4.4 6.31

s02586 2.21 2.72 1.84 2.3 s07654 4.48 5.49 4.07 5.02

s02703 1.74 2.09 1.2 1.79 s08141 13.53 16.02 4.36 5.25

s02858 10.42 12.79 6 7.99 s08141 6.48 7.69 3.61 4.28

s03617 4.12 5.15 1.92 2.5 s10152 5.29 6.72 2.86 4.06
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s04679 2.92 3.57 1.77 2.11 s12351 6.98 8.41 2.92 3.61

s04679 2.93 4.13 1.22 1.47 s12352 4.63 6.35 4.61 5.66

Comparison result
To illustrate the robustness of the system, we compared the
performance of the system with the one of the already existing
methods that uses the magnitude, area based features for BP
Prediction. The algorithm proposed by Kachuee et al. [23] uses
PTT calculated from ECG and PPG, systolic amplitude,
diastolic amplitude, amplitude ratio, area under the PPG curve
at different stages as the features. This system that has
demonstrated a considerable accuracy is taken as the baseline
system for comparison purposes. We implemented the baseline
system with the same dataset to ensure better comparison of
the two systems. Table 4 enumerates the performance measures
(MAE and RMSE) obtained using the test dataset (n=32) for
the proposed system and the baseline system. The relative
improvement in terms of error from one method over the other
is calculated to check whether the proposed system performs
better than the baseline system. It is calculated using the
formula (8).

The method 1 refers to the baseline system and the method 2
refers to the proposed system. The relative e�������� �����  % = ��������ℎ��2− ��������ℎ��1��������ℎ��1 × 100(8)
rror in percentage is calculated for MAE and RMSE to show
the performance increase of the proposed system with respect
the baseline system. It can be understood that the proposed
system that uses sparse coefficients as features outperforms the
baseline system. The performance of the proposed system with
respect to the baseline system in terms of the MAE and RMSE
is increased by 20.55% and 22.14% respectively for systolic
BP and 28.15% and 23.48% respectively for diastolic BP. This
elucidates the fact that the sparse coefficients based BP
prediction system can result in less erroneous BP values.

Table 4. Error measures comparison of proposed with baseline
system.

Regression Models
Systolic BP (mmHg) Diastolic BP (mmHg)

MAE RMSE MAE RMSE

Baseline system 21.5 27.91 14.99 17.8

Proposed System 17.08 21.73 10.77 13.27

Improvement (%) 20.55 22.14 28.15 23.48

One of the other comparison is between the standard method
and the proposed system of beat-to-beat BP measurement. The
Bland-Altman plot, a graphical method is used to visualize the
comparison of two methods of BP measurement [24]. The
Bland-Altman plot for the record s01840 is shown in Figure 5.
The error difference between the BP from the reference method

and BP from the proposed method is plotted against the
average of the two methods. The limits of agreement (LoA) is
the 95% confidence intervals (CI) is given by Mean ± 1.96 of
SD. The two methods are said to be in agreement and
interchangeable only if the CI are within the allowed limits
(Mean-5 mmHg, SD-8 mmHg as per AAMI). Except for the
few instances, all other data instances lie within the 95% CI
levels thus making the method clinically acceptable.

Figure 5. Bland-Altman plot of sparse features based bp estimation
for record s01840.

Discussion
The study discusses about the application of sparse coding in
modelling the shape of PPG signal for beat-to-beat cuffless
estimation of BP. The results suggests that the sparse features
can be a promising characteristics for PPG modelling. The
ability of the learned dictionary for its use in sparse coding of
PPG can depends on the size of the dictionary. The over-
complete dictionary whose elements are PPG signal frames
each of pulse interval duration of varying size and patterns
enables for precise selection of the dictionary element to
represent the given input PPG signal frame. The dictionary
element which has the closest resemblance to the input PPG
segment is given the highest weights (sparse coefficient) and
so on. Increasing dictionary size increases the number of
possible patterns of PPG to be selected upon for signal
characterization. The sparse coefficients that weighs each
dictionary element that sums up to mimic the given input
signal is therefore unique and inherent to noisy signals. The
number of non-zero coefficients or the number of dictionary
atoms to be selected is decided upon by the user. To verify the
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given fact, we showed the effect of dictionary size in the error
measures in the Figure 6.

Figure 6. Effect of dictionary size on the performance of the system.

Opposed to the fact, the figure illustrates that the performance
of the BP prediction system is independent of the size of the
dictionary. A dictionary even with symmetrical size (100
indices × 100 elements) can be applied for the process
provided that the dictionary is well learned by the varied
training data. A well learned dictionary with as many
variations of dictionary elements available from the training
data and irrespective of the health status of the subjects should
be able to generate sparse coefficients that can be
representative of the BP. Though we achieved a considerable
improvement in accuracy with one-time calibration, a well
learned dictionary can be universal to generate sparse features
for any type of data and result in state of no calibration.
Further, the inclusion of information like the age, height,
weight and sex may contribute to the improvement of the
system. The BP ranges varies for males and females and also
for different age groups. A distinctive nature in the shape of the
PPG can be observed by the presence of the prominent dicrotic
notch in the middle aged adults. The arterial stiffness in the old
aged adults’ results in disappearance of the notch making it
necessary for separate BP prediction models. The model
developed based on different age groups can improve the
performance of the system. Despite the simplicity of the sparse
features, it does have some limitations. The complexity of the
training process of the model increases as the size of the
feature vector increases. The trade-off exists between the
vector size and the computation time. Though there are very
few non-zero coefficients, the processing of all zeros in the
remaining indices of each vector increases the computation.

Conclusion
In summary, this article presents the characterization of
Photoplethysmographic waveform using K-SVD for the beat-
to-beat prediction of BP. The technique involves the dictionary
learning process where the randomly initialized dictionary is
processed by K-SVD based on the photoplethysmogram
signals. The updated dictionary consists of elements each
defining varying shapes of the PPG. The OMP algorithm

generates the sparse features for the PPG signal frame of pulse
interval duration using the update dictionary. The supervised
regression model developed with these features shows better
performance compared to the system that uses hand-engineered
features from ECG and PPG. While the proposed system
exhibits a considerable reduction in the error measures when
compared to the standard BP measurements, the future work
would focus on to test the method on real time datasets to
check its robustness and also to reduce the number of
calibration required and therefore test its ability for
unobtrusive, long-term monitoring process.
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