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SHORT COMMUNICATION

The transcription of DNA into single-stranded RNA molecules 
defines the biological activity and phenotype of a cell. At any 
given time, the total amount of synthesized RNA in a cell is 
referred to as the transcriptome (Ozsolak F and Milos PM, 2011), 
changes in which are likely to have functional consequences. 
Therefore, studying gene expression is crucial to understanding 
altered phenotypes and properties of a cell in development and 
disease.

The last two decades has seen the continual improvement of 
profiling gene expression at a genome-scale using hybridization-
based microarrays (Schena M et al, 1995) and, more recently, 
RNA sequencing (RNA-Seq) (Wang Z et al, 2009), a technique 
for unbiased sequencing of expressed genomic loci at high 
coverage. Regarded as the industry standard for gene expression 
profiling via measurement of messenger RNA (mRNA), RNA-
Seq also allows for analysis of non-coding RNA classes 
(Ozsolak F and Milos PM, 2011; Wang Z et al, 2009). However, 
this technique conventionally requires millions of cells (∼1 μg 
of total mRNA) and therefore the output for each gene is an 
average expression level across the population of input cells 
(Wilhelm BT and Landry JR, 2009). Now often referred to as 
‘bulk’ RNA-Seq, it does not account for the stochastic nature 
of gene expression, cellular diversity (i.e. differences between 
cells of the same ‘type’), or cellular heterogeneity (i.e. different 
cell types within the same tissue/cell population). 

In recent years, technological advances in next generation 
sequencing have allowed for unbiased profiling of single cells at 
multiple layers (i.e. the genome, epigenome and transcriptome) 
(Linnarsson S and Teichmann. 2016). Although single-cell 
RNA-Seq (scRNA-Seq) was first published by Tang et al. in 
2009, it only started to gain widespread popularity several 
years later following lower sequencing costs and refinement of 
protocols (Tang F et al, 2009). Earlier scRNA-Seq approaches 
such as Smart-Seq (Ramskold D et al, 2012), MARS-Seq (Jaitin 
DA et al, 2014) and Fluidigm C1 (Xin Y et al, 2016), were well-
based, but recent droplet-based approaches such as Drop-Seq 
(Macosko EZ et, 2015.), inDrop (Klein AM et al, 2015) and 

Chromium (Zheng GX et al, 2017) have significantly increased 
the number of cells that can be profiled in parallel for a single 
experiment. So far, scRNA-Seq has already yielded insight 
into a number of different areas that could not be achieved 
using bulk transcriptome profiling including, for example, the 
stochastic nature of gene expression (Shalek et al, 2017; Kar  
et al, 2017). To reveal complexity in the brain, studies in the 
central nervous system have successfully mapped cellular 
diversity and have even identified novel cellular subtypes 
(Zeisel A et al, 2015; Lake BB et, 2016). Similarly, studies in 
embryonic and immune cells have also revealed new levels of 
heterogeneity (Jaitin DA et al, 2014; Deng Q et al, 2014; Yan L 
et al, 2013). In a scRNA-Seq analysis of ~2400 immune cells, 
a subpopulation of dendritic cells were identified that could 
potently stimulate T-cell activity (Villani AC et al, 2017), which 
has therapeutic implications against cancer. In several different 
contexts, scRNA-Seq has been used to infer cellular lineages 
and developmental relationships (Treutlein B et al, 2017; 
Venteicher AS et al, 2017). This approach has also been used 
in cancer to investigate the cellular heterogeneity in the tumour 
microenvironment (Patel AP et al, 2017; Puram SV et al, 2017) 
and for profiling individual circulating tumour cells (Miyamoto 
DT et al, 2015). These are a just few examples of how single 
cell analysis, in particular scRNA-Seq, is transforming how 
we perform genomic profiling. The future looks bright for this 
emerging technology in investigating human disease, alone or 
in combination with other –omics analysis. For example, as 
scRNA-Seq can resolve each clone within a tumour, it could 
potentially be used for longitudinal monitoring of tumour 
relapse, reveal subsets refractory to therapy, and be used in a 
clinical setting for detection of rare disease-associated cells.
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