Robotics: Advancing orthopedic precision and patient care.

Viktor Hansen*

Department of Orthopedic Surgery, Lund OrthoTech University, Lund, Sweden

Introduction

This systematic review and meta-analysis looked closely at randomized controlled trials comparing robotic-assisted total knee arthroplasty with traditional methods. What they found was that while both approaches are effective, robotic assistance might give a slight edge in terms of precision and alignment, potentially leading to better early functional outcomes, though long-term differences are still being explored [1].

This article provides a comprehensive overview of where orthopedic surgical robotics stands right now and where it's headed. It really breaks down how these technologies are changing surgical approaches, improving patient care, and what future innovations we can expect in the field, highlighting the progression from simple guidance systems to more autonomous solutions [2].

When it comes to total hip arthroplasty, robotic assistance is becoming a significant player. This review outlines the current research backing robotic-assisted hip replacements, discussing how it impacts implant positioning, limb length discrepancy, and overall patient satisfaction, and then points to where future research needs to focus to further refine these techniques [3].

The application of robotics in spine surgery is an area of rapid growth. This systematic review explores the various ways robots are being used in spinal procedures, from pedicle screw placement to complex deformity corrections. It really highlights the potential for increased accuracy and reduced operative complications, while also pointing out areas needing more robust clinical evidence [4].

This paper traces the journey of robotics in orthopedic surgery, from early concepts to the sophisticated systems we see today. It offers a historical perspective on how these tools have transformed surgical techniques, improved patient safety, and expanded the capabilities of orthopedic surgeons, setting the stage for discussions about future developments and broader adoption [5].

Robotic assistance in total shoulder arthroplasty is gaining traction, and this systematic review dives into its current applications. It explores how robotics might improve glenoid component positioning and overall biomechanics, potentially leading to better functional

outcomes and reduced revision rates, while also highlighting the need for more long-term data [6].

This meta-analysis pits robotic-assisted unicompartmental knee arthroplasty against conventional methods, comparing clinical outcomes and complication rates. What it suggests is that while both are viable, robotic assistance might offer benefits in terms of precision and alignment, potentially leading to improved patient satisfaction and fewer post-operative issues, warranting further investigation [7].

Here's a review focusing on the recent progress in orthopedic robotassisted surgery. It takes a look at the technological advancements, discussing how new systems are enhancing surgical planning, execution, and intraoperative decision-making. The article gives you a good sense of the current state of the art and the directions developers are taking this technology [8].

This systematic review explores the emerging field of robotic-assisted surgery specifically within foot and ankle orthopedics. It examines the current evidence for its use in various procedures, assessing improvements in accuracy, complication rates, and patient outcomes, and highlights the potential for this technology to address complex anatomical challenges in this specialized area [9].

What this systematic review and meta-analysis digs into is how robotic assistance might improve outcomes and cut down on complications in total hip arthroplasty. It pulls together data to show that these robotic systems can lead to more accurate component placement, which in turn could mean a lower risk of complications and potentially better long-term function for patients [10].

Conclusion

Robotics has significantly evolved in orthopedic surgery, transforming techniques and enhancing patient safety and surgeon capabilities. These technologies are changing surgical approaches, improving patient care, and pointing to future innovations, moving from simple guidance systems to more autonomous solutions. Recent advances are enhancing surgical planning, execution, and intraoperative decision-making, showcasing the current state of the

*Correspondence to: Viktor Hansen, Department of Orthopedic Surgery, Lund OrthoTech University, Lund, Sweden. E-mail: viktor.hansen@lundorthotech.se Received: 04-Jul-2025, Manuscript No. aaasr-217; Editor assigned: 08-Jul-2025, Pre QC No. aaasr-217 (PQ); Reviewed: 28-Jul-2025, QC No. aaasr-217; Revised: 06-Aug-2025, Manuscript No. aaasr-217 (R); Published: 15-Aug-2025, DOI: 10.35841/2591-7765-9.3.217

art and future directions in development.

In total knee arthroplasty, robotic assistance offers a slight edge in precision and alignment, potentially leading to better early functional outcomes compared to traditional methods. Similarly, for unicompartmental knee arthroplasty, robotics shows promise for improved precision, alignment, patient satisfaction, and fewer post-operative issues.

For total hip arthroplasty, robotics is a key player, impacting implant positioning, reducing limb length discrepancy, and improving patient satisfaction. Studies show it can lead to more accurate component placement, lowering complication risks and potentially improving long-term function.

Robotics also plays a role in spine surgery, improving accuracy in pedicle screw placement and complex deformity corrections, with potential for reduced operative complications. In total shoulder arthroplasty, it aims to improve glenoid component positioning and biomechanics for better functional outcomes. The emerging field of foot and ankle orthopedics also uses robotic assistance, assessing improvements in accuracy, complication rates, and patient outcomes for complex anatomical challenges.

References

1. Zhigang L, Wei Z, Shan Z. Robotic-Assisted Total Knee Arthroplasty ver-

- sus Conventional Total Knee Arthroplasty: A Systematic Review and Meta-Analysis of *Randomized Controlled Trials. J Bone Joint Surg Am.* 2023;105:22-34.
- 2. Yang M, Haoran L, Jianjun M. Current status and future trends in orthopedic surgical robotics. J Orthop Transl. 2022;32:111-122.
- Jonathan O, Joshua M, Brian CL. Robotic-assisted total hip arthroplasty: current evidence and future directions. EFORT Open Rev. 2021;6:569-577.
- Ankit P, Jacob C, Hardeep SB. The Role of Robotics in Spine Surgery: A Systematic Review. J Orthop. 2020;21:209-216.
- Fares SH, Sarvjeet SK, David WLJ. Evolution of Robotics in Orthopedic Surgery. J Bone Joint Surg Am. 2019;101:84-93.
- Christopher H, Xinning L, Matthew JD. The application of robotics in total shoulder arthroplasty: a systematic review. *J Shoulder Elbow Surg*. 2023;32:e475-e483.
- Christian D, Melanie B, Moritz WF. Robotic-Assisted vs. Conventional Unicompartmental Knee Arthroplasty: A Meta-Analysis of *Clinical Outcomes* and Complications. J Clin Med. 2024;13:890.
- 8. Jae-Hyuk K, Yonghan H, Kyu-Sang P. Recent advances in orthopedic robot-assisted surgery: *A review. J Bionic Eng.* 2022;19:1530-1546.
- 9. Stefano D, Guido C, Giovanni M. Robotic-assisted surgery in foot and ankle orthopaedics: *A systematic review. J Orthop Res.* 2022;40:1969-1979.
- Jibin V, Adhithiya R, Abinaya N. The role of robotic assistance in reducing complications and improving outcomes in total hip arthroplasty: A systematic review and meta-analysis. *Arthroplast Today*. 2023;20:100994.

Citation: Hansen V. Robotics: Advancing orthopedic precision and patient care. aaasr. 2025;09(03):217.

aaasr, Volume 9:3, 2025 2