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Abstract

Brain computer interface decodes signals that the human brain generates and uses them to control
external devices. The signals that are acquired are classified into movements on the basis of feature
vector after being extracted from raw signals. This paper presents a novel method of classification of
four finger movements (thumb movement, index finger movement, middle and index finger combined
movement and fist movement) of the right hand on the basis of EEG (Electroencephalogram) data of the
movements. The data-set was obtained from a right-handed neurologically intact volunteer using a non-
invasive BCI (Brain-Computer Interface) system. The signals were obtained using a 14 channel
electrode headset. The EEG signals that are obtained are first filtered to retain alpha and beta band
(8-30 Hz) as they contain the maximum information of movement. Power Spectral Density (PSD) is used
for analysis of the filtered EEG data. Classification of the features is done using various classifiers.
Various classifiers have been tested and compared on basis of the mean class accuracy achieved. The
classifier chosen for the study is logistic regression, which gives an accuracy of 65%. Other classifiers
that were tested were multi-layer perceptron, linear discriminant analysis, and quadratic discriminant
analysis. The novelty of this research is the targeted finger movements. These movements were targeted
so they can be further used for control of upper limb prosthesis.
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Introduction
Brain Computer Interface (BCI) uses signal of brain function
to enable individuals to communicate with the external world,
bypassing normal neuromuscular pathways [1]. The main
purpose of developing such a system is to provide those people
with a method of communication with the external world,
whose normal muscular pathways have been permanently
damaged by disorder such as ALS (Amyotrophic Lateral
Sclerosis) or an injury to the spinal cord. These brain signals
are called Electroencephalographic (EEG) signals and after
some pre-processing, they can be used to detect the user’s
intent for a particular movement of any part of the body.

BCI system is like any communication system and has an
input, i.e. the EEG of the user, an output (i.e. device
commands), and components that translate input into output.
The EEG is acquired via a headset that consists of electrodes to
capture the signals. These signals are transformed into the
digital domain and sent to a computer for signal processing.
The signal processing consists of digital filtration, feature
extraction and a translating algorithm (classifier). After the
intent of the person has been identified by the translating
algorithm, the signal is sent via a control interface to the

control device [1]. The phases of the system that was used in
this research are shown in Figure 1. It is important that any
feature chosen should have a large signal to noise ratio. There
are a variety of feature extraction procedures such as spatial
filtering, voltage amplitude measurements, spectral analyses.
These signals are then processed to show the user intent. In the
end, the system is interfaced with a device for control.

This study uses power spectral density of finger movements of
one hand occurring over the motor cortex as a feature to
classify them [2]. The mu and beta rhythms that occur over the
motor cortex have a frequency range of 8-30 Hz. These
rhythms provide us with the information related to movement.
Mu and beta rhythms are largest in amplitude when there is no
movement and the amplitude decreases with movement (Event
Related De-synchronization and Event Related
Synchronization). These are useful for classification of
different limb movements. Their amplitude can also be
controlled with some training of the subject and hence, the
system performance can increase [3]. PSD describes how the
power of the signal is distributed over its frequency. There are
many properties in PSD of brain signals that can be used as a
feature. One of the most commonly used features is band
power of a specific frequency band from the PSD of the signal.
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This study is using the average band power of the PSD of the
mu and beta rhythms as a feature vector.

A classifier is applied to distinguish between different
movements classes using the selected features. The classifier
output is then transformed into an appropriate signal used to
control a variety of devices. The training data helps the
classifier build a model to differentiate between the classes.

Some of the mostly used classifiers in BCI are Linear
Discriminant Analysis, Neural Networks, Quadratic
Discriminant Analysis and Support Vector Machines [4]. Some
of these classifiers and the logistic regression model were
trained and tested to classify the feature and their results were
compared. ‘Matlab’ and ‘Weka’ were used for performing this
task.

Figure 1. Phases of the system from data acquisition to the control device.

The movements of the fine body parts are not well-researched
in EEG based BCI [5]. Researchers have concentrated on
spatially apart parts such as arms, legs, tongue. Those who
have classified finger movements of the same hand have used
Electrocorticography (ECoG) signals that have a higher signal
to noise ratio (SNR). However, those who have done similar
work are mentioned in Table 1 along with the accuracy
achieved in their study.

RanXiao et al. used a 128 channel electrode system to decode
individual finger movements. They calculated the PSD of the
EEG data and decomposed it using principal component
analysis and then used support vector machine for
classification of ten pairs of finger movements [6].

Vuckovic et al. classified the flexion and extension of left and
right wrists and used a classifier based on Elman’s neural
network and achieved an accuracy of 69%. They used
amplitude of Gabor coefficients calculated over 125 ms and 2
Hz time-frequency windows as feature vectors. They proposed
a 2-stage 4 class classifier model for classification and the
same model is employed by this study [7].

Mohamed et al. classified wrist and finger movements of both
right and left hand. They also classified both imaginary and
real movements. The data was pre-processed using filtration
and independent component analysis. For feature extraction,
they calculated power spectrum and then used Bhattacharyya
distance for feature selection. They tested two classifiers, one
based on Mahalanobis Distance (MD). The other classifier they
tested was Artificial Neural Network (ANN). The average
accuracy achieved in this study was 65% and 71% for MD and
ANN classifier respectively [8].

Wang et al. classified left or right finger movements. Their
algorithm was based on common spatial subspace
decomposition and support vector clustering [9].

Lehtonen et al. classified left versus right hand index finger
movements. Their classifier was trained online. They removed
linear trends from EEG data and then computed the Fast
Fourier transform and filtered different frequency bands. They
used temporal features for low frequencies (below 3 Hz) and
instantaneous amplitudes for higher frequencies. The
researchers used Kolmogorov-Smirnov (KS) test statistic for
feature selection. Their classification was based on three linear
transformations of the feature space and a linear classifier with
a logistic output function [10].

Table 1. Related research.

Researchers 

Name Body part targeted Electrode system Accuracy

Xiao and Ding [6] Ten fingers pairs 128-Channel

Geodesic

EEG System 300

45.2%

Xiao and Ding [3] Ten finger pairs 128-Channel
EEG sensor
layout with 50
electrodes

77%

Vuckovic and Sepulveda
[7]

Right and left
hand movement

 

64-Channel
biosemi active
two systems.

 

69%

 

Mohamed, Marwala and
John [8]

Wrist and finger
movement
discrimination

 

GSN 128

 

65%-71%

 

Lehtonen, Jylanki,
Kauhanen and Sams [13]

Visual cue based
left and right index
finger movement

32-channel
amplifier (Brain
Products GmbH,
Germany).

80%

Wang and Wan [14] Press with the
index and little

28 electrode
10/20 system

86%
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fingers the
corresponding
keys in a self-
chosen order and
timing ‘self-paced
key typing’.

Methodology

Experimental protocol and data acquisition
The subject was a healthy, right-handed, 22 y old female
without prior training of the experimental procedure. The data
acquisition was carried out in a closed room with the subject
sitting comfortably in a chair with arms rested on the sides.
The subject was asked to perform the movements shown on a
computer screen that were displayed as a video. The video
showed a person performing the movements that the user had
to mimic. Each movement lasted 10 seconds and one trial was
of 1 min 15 s with a 2 s cue between each movement. In the
start of the video, there are 10 s of instructions for the
volunteer. Then there is a 2 s cue in form of a star and then the
hand movement to be performed is shown which the volunteer
has to replicate. The movements that were recorded are shown
in Figure 2. These movements were recorded via an Emotiv
electrode headset that has 14 channels based on the
international system which are AF3, F7, F3, FC5, T7, P7, O1,
O2, P8, T8, FC6, F4, F8 and AF4 [2-4,9-16]. Signals were
recorded at 128 Hz sampling rate (Figure 3).

Figure 2. Finger movements that were recorded. (A) Is thumb
movement. (B) Is fist movement. (C) Is index finger movement. (D) Is
two (index and middle) finger movement.

The recording was done in 3 sessions. Each session had 20
trials with a break of a min between each trail and a 5 min
break after 10 trails. One session took around 1 h. In the end,
there were 60 recordings of each movement. 13 recordings of
each movement had to be discarded because of improper
electrode connection. During processing, 5 s of data of each
movement is being used.

The data is truncated to 5 s and then it is filtered and processed
further. The middle 5 s of data was taken, i.e. 2.5 s of data was
truncated from both ends. This was done in order to ensure that
only the true movement data was taken because when there is a

shift from another movement, the volunteer doesn’t change
movement instantaneously.

The volunteer is performing movements repetitively for the 5 s
that are being processed. In a BCI paradigm, it is common to
take length of recordings with repetitive movements since ERD
occurs with start of each motion and ERS occurs at the
relaxation of motion. Mohamed et al. are a few examples of
researchers who used a similar experimental protocol
[5,8,10,15].

The EEG topography of raw data of each of the movements is
shown in Figure 4. The plots are of a randomly taken data
sample in which the channel values have been averaged over
the 5 s window.

The average results are of the values as obtained from the CSV
file produced by the Emotive headset. It should be noted that
these values have a DC offset of around 4000 points. The units
are in microvolts. The topography plots are interpolated by 2-D
linear interpolation performed using “Mat lab”. It can be seen
that all the movements are concentrated under the same region,
which is the left hemisphere of the frontal lobe. This region is
the sensorimotor cortex.

There are minor differences in the topography of the
movements. This is because the locations of fingers on
sensorimotor cortex lie close together and hence, are recorded
by the same electrodes.

Even though emotive does not have electrodes in the region of
major activity, interpolation of the channel data shows us the
region of the brain where the activity is located.

Figure 3. Electrode placement.

Signal pre-processing
5 s of EEG data was digitally filtered using a Butterworth filter
between 6-30 Hz. The high pass filter at 6 Hz had an order 6
and the low pass filter at 30 Hz had order 12. This was done
because the alpha and beta band, which contains most
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movement related information, lies between 8-30 Hz.
Butterworth filter gives a flat response with zero ripples and is
used for this reason.

Figure 4. Topography of raw data of finger movements of the right
hand. (A) Is thumb movement. (B) Is index finger movement. (C) Is
index and middle finger movement. (D) Is fist movement.

The eye artefact has a frequency of 2-5 Hz and is hence
removed when a high pass filter of 6 Hz is applied. The reason
of choosing alpha and beta signals for this study is that these
signals are related to physical and mental relaxation. Theta and
delta are related to unconscious, deep sleep or meditation [16].

Feature extraction
Power Spectral Density of the filtered signal was found by
Welch’s method, which is a non-parametric method where PSD
is calculated directly from the filtered signal itself. For each
channel, the filtered signal is divided into 64 window segments
with a 50% overlap. The 5 second data that was filtered is first
divided into 64 windows. The window being used is a
hamming window. Fast Fourier Transform is then applied to
each windowed segment. The power spectral density of
segment is then calculated.

The PSD of the each segment is given by equation 1 [12].��� = � � 2����  (1)
Where ‘Fs’ is the sampling frequency, ‘L’ is the length of
segment and X (f) is the data after FFT has been applied on it.
‘U’ is the window normalization constant given by equation 2.

U    = 1L∑n = 0
N−1 w n 2 2

After the PSD of each segment is calculated, the corresponding
values of each segment are added and averaged. The resultant
vector is then averaged again and this gives us the average
band power of the channel over 6-30 Hz band (as all other
frequencies have been removed by filter). This process is
repeated for each channel, which leaves us with a feature

vector of 14 constituents showing the average band power of
each channel.

Classification method 1: 2 stage model
For classification, a 2 stage 4 class model was used (Figure 5)
[17-19]. The classifier used is logistic regression. Logistic
Regression is a type of probabilistic statistical classification
model that estimates the probability of an event occurring.
Unlike linear regression, it does not assume linear relationship
between the dependant and independent variable.

In the first stage, the classification training was between two
classes, one being the finger and thumb class and the other
being the fist, index and middle finger (two) combined class. In
the second stage, there are further two classifier networks. The
first was trained to classify between finger and thumb class and
the other was trained to classify between the fist and two
(index and middle finger) class. ‘Weka 3.6.9’ was used to train
the three models. The three models were trained by using 75%
of the dataset. These trained models were then imported to
‘Matlab’ and were tested there. In “Matlab”, this study tested
all the three stages with the remaining 25% of the dataset.
“Weka” is data mining software that has a collection of
machine learning algorithms and has tools for pre-processing
as well as classification and more. In this proposed work, the
suggested software for training of our classifiers is Weka. For
the logistic regression classifier, the probability of the first
class is given by Equation 3 [11].

� � = 1 = exp ��*�(exp ��*� + 1) (3)
Where F is the feature vector and B is the coefficients of
logistic regression. Parameter F is the feature vector passed on
by the feature extractor as described in section C.

Parameters BT are the coefficients of logistic regression
calculated by Weka by the training of the classifier. Weka
calculates the coefficients using Quasi-Newton method to find
the optimized values. After the training stage, the classification
equations are as under:

Initial classification: f=-1.4049+(feat(1) × -0.01539)+(feat(2)
× 0.0333)+(feat(3) × 0.1447)+(feat(4) × -0.0591)+(feat(5) ×
-0.0644)+(feat(6) × 0.0589)+(feat(7) × -0.1048)+(feat(8) ×
0.0672)+(feat(9) × -0.0073)+(feat(10) × -0.0466)+(feat(11) ×
-0.1013)+(feat(12) ×0.8546)+(feat(13) × 0.0012)+(feat(14) ×
-0.0025).

Thumb and finger classification: f1=0.6788+(feat(1) ×
-0.3851)+(feat(2) × 0.0593)+(feat(3) × 0.1621)+(feat(4) ×
-0.0054)+(feat(5) × 0.0642)+(feat(6) × -0.5581)+(feat(7) ×
0.1561)+(feat(8) × 0.0018)+(feat(9) × -0.003)+(feat(10) ×
-0.0227)+(feat(11) × 0.1227)+(feat(12) × 0.1599)+(feat(13) ×
-0.0004)+(feat(14) × -0.0172).

Fist and two classifications: f1=-0.3847+(feat(1) × -0.0595)+
(feat(2) × 0.0193)+(feat(3) × 0.0361)+(feat(4) × -0.02)+
(feat(5) × -0.0458)+(feat(6) × 0.0377)+(feat(7) × -0.0856)+
(feat(8) × 0.0623)+(feat(9) × -0.0008)+(feat(10) × 0.008)+
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(feat(11) × -0.1519)+(feat(12) × 0.9574)+(feat(13) × 0.0396)+
(feat(14) × -0.203).

The criterion for selection of class is: G(x)=class 1 if Pr>0.5,
G(x)=class 2 if Pr<0.5. If Pr=0.5, the result is classified in
neither classes and disregarded.

Other classifiers were also tested which are Multi-Layer
Perceptron, Linear Discriminant Analysis (LDA) and
Quadratic Discriminant Analysis (QDA). LDA and QDA were
tested in a 2-stage 4 class model. For LDA and QDA, training
was done for 75% of the dataset and they were tested over the
remaining 25% dataset.

Discriminant analysis creates a hyper plane to separate the data
into two classes. It assumes that different classes generate data
based on different Gaussian distributions [14]. Both Quadratic
(QDA) and Linear Discriminant Analysis (LDA) were trained
in Matlab with a 75% training data set. Testing was done in
Matlab with the remaining 25% data set. In LDA, it is assumed
that the co-variance of each class is same and the mean varies
while in QDA, both are assumed to vary [4]. The 75% and
25% training and testing division was done once and was used
for logistic regression, LDA and QDA. In each division, the
proportion of samples from each class was same for training
and testing data.

The 2 stage model was also tested using 5 fold cross validation.
In 5 cross validation, the data was divided into 5 disjoint
subsets, each with equal proportions of samples of each class. 4
of these subsets are used for training and 1 for testing of data.
This method is repeated 5 times with all possible combinations
of 4 subsets used for training and 1 subset used for testing. The
result is then averaged over 5 to give the end results.

Results
The confusion matrix is given in Table 2. Table 3 shows the
accuracy of each classifier network in a 2-stage 4 class logistic

regression classifier. Each class’s accuracy of classification by
the entire classifier is shown in Table 4. The confusion matrix
shows how many times the feature was correctly classified as
its own class and how many times it was classified as any other
class. For example, the thumb features were classified as
thumb in 7 instances out of the total 13 instances tested, as
finger in 1 instance, as fist in 3 instances and as two in 2
instances. Accuracies are calculated from the testing data set
only. They were calculated from the confusion matrices shown
by taking out the percentage of correctly classified instances
for each class by total number of instances. For example, if out
of 13 instances, thumb is correctly classified 7 times, the class
accuracy is 7/13=55%. This is repeated for each class and the
average of all is taken to give average per class accuracy,
which in case of logistic regression is calculated as:
(55+77+69+69)/400 × 100=67.5%. This is how accuracy is
calculated for all classifiers. Table 5 shows the confusion
matrix obtained from 5 fold cross validation with logistic
regression in a 2-stage model. The mean class accuracy of the
logistic regression 2-stage model is 67.5% with 75% training
data set, while 5 fold cross validation test yields an accuracy of
44.27%.

Table 2. Confusion matrix for 2 stage model logistic regression with
75% training 25% test set.

Class Class the feature was classified as by the classifier

Thumb Finger Fist Two

Thumb 7 1 3 2

Finger 3 10 0 0

Fist 0 0 9 4

Two 0 1 3 9

Table 3. Network classification accuracy of two-stage logistic classifier. Network (1) classifies between class 1(thumb + finger) and class 2(Fist +
Two). Network (2) classifies between thumb and index finger. Network (3) classifies between two and fist.

Network number Classification Accuracy with 75% training and 25% testing data. Classification accuracy with 5 fold cross validation

1 74% 66%

2 76% 71%

3 64% 62%

Table 4. Per class accuracy using a 2-stage model logistic classifier.

Class Classification Accuracy with 75% training and 25% testing data Classification accuracy with 5 fold cross validation

Thumb 55% 58%

Index finger 77% 39.5%

Fist 69% 52%
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Table 5. Confusion matrix for 2-stage logistic regression with 5 folds
cross validation testing.

Class

 

Class the feature was classified as by the classifier

Thumb Finger Fist Two

Thumb 28 4 9 7

Finger 9 19 6 14

Fist 4 4 25 15

Two 7 13 7 13

Linear Discriminant Analysis classifier was also used as a 2-
stage 4 class model and it was trained and tested in Matlab.

The mean class accuracy of this classifier was 31.25% with
75% training and 25% testing data set whereas 5 fold cross
validation yields an accuracy of 24%.

Quadratic Discriminant Analysis was tested and trained as a
classifier in Matlab. The classifier was used as the same 2-
stage 4 class model.

The mean class accuracy of QDA was 31.47% with 75%
training and 25% testing data set whereas mean class accuracy
using 5 fold cross validation was 49%.

Table 6 compares the accuracy of each of the classifiers tested.

Table 6. Comparison of classifiers for classification of finger movements with PSD as feature vector and 2 stage classification model used.

Classifier Mean Class Accuracy with 75% training and 25% testing data
set.

Mean Class Accuracy with 5 fold cross
validation

Logistic Regression 67.5% 44.27%

Linear Discriminant Analysis 31.25% 23.97%

Quadratic Discriminant Analysis 31.47% 48.9%

Table 7. Comparison of classifiers for classification of finger movements with PSD as feature vector and 1 vs. all model used.

Classifier Mean class accuracy with 75% training and 25% testing data
set

Mean class accuracy with 5 fold cross
validation

Logistic Regression 31% 65%

Linear Discriminant Analysis 36% 43.36%

Quadratic Discriminant Analysis 20% 53.2%

Table 8. Confusion matrix for 1 vs. all logistic regression with 5 folds
cross validation testing.

Class Class the feature was classified as by the classifier

Thumb Finger Fist Two

Thumb 39 3 3 4

Finger 7 28 5 9

Fist 4 2 28 5

Two 1 7 9 32

Classification method 2: 1 vs. all model
The second classification model that was tested was the 1 vs.
all models. In this model, there are 3 classifiers in 3 stages.

Figure 6 shows the model flow chart. In the first stage, the
classification is between the thumb and all the other classes.
The next is between the finger and the remaining classes and in
the final stage; the classification is between two and fist class.

Logistic regression as well as QDA and LDA were tested in
this manner.

As described previously, the classifier networks were tested by
both 75% training and 25% testing split and 5 fold cross
validation. In both cases, each division of data had the same
proportion of samples from each class.

Logistic Regression was trained and tested in Weka 3.6.9 while
LDA and QDA were trained and tested in Matlab.

Table 7 compares the classification accuracies of QDA, LDA
and logistic regression in a 1 vs. all model with both 75%
testing and 25% training method, and 5 fold cross validation
method.

Table 8 shows the confusion matrix of logistic regression as
obtained from 5 fold cross validation method.

Table 9 shows the per class accuracy of 1 vs. all logistic
regression model.
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Figure 5. 2 stage model logistic regression classifier used for the
system.

Figure 6. 1 vs. all classifier model.

Table 9. Per class accuracy using a 1 vs. all model logistic classifier.

Class Classification Accuracy with 75% training and 25% testing data Classification accuracy with 5 fold cross
validation

Thumb 25% 80%

Index finger 50% 57%

Fist 33% 65%

Index and middle finger 17% 57%

Discussion
From the results obtained from both the models and all the
classifiers, it is seen that logistic regression in a 1 vs. all model
gives the highest accuracy of 65% when tested with 5 fold
cross validation. 5 cross validation is a much more reliable
testing technique because in percentage split, it is possible that
the split just happens to work better for a particular classifier.
This was the case when the 2-stage logistic classifier was
tested. Hence, to ensure reliability, each classifier was tested
with both tests in the two models. The results prove logistic
regression gives the highest accuracy results and should be
used in the 1 vs. all model shown for the chosen movements.
The confusion matrix of the classifier also shows that the
classifier is not biased towards any class.

The research is using a low-cost EEG headset with only 14
channels with no electrode over the motor cortex. The accuracy
for the 4-class problem, with movements that are closely

located on the cortex, was not expected to be greater than 25%
and accuracy greater than this show potential for work in this
field. The impact of the work lies in the fact that an
inexpensive headset can be used to classify a four-class
problem of data from one hand. By using a headset with more
electrodes that can capture the signals more accurately from
the motor cortex, this methodology will show much better
results and can be effectively used for prosthesis control.

Comparison with multi-layer perceptron
For further comparison, multi-layer perceptron was trained and
tested by using 75% data set for training and remaining for
testing and with 5 fold cross validation.

Multi-layer perceptron was trained and tested in “Weka”. This
classifier is a feed forward artificial neural network classifier. It
consists of an input layer, hidden layer and an output layer of
computational nodes [13].

Recognition of finger movements using EEG signals for control of upper limb prosthesis using logistic regression
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The multi-layer perceptron used had 9 hidden layers and each
node had a sigmoid function. Using a multi-layer perceptron
gives an accuracy of 44% with 75% training set. With 5 fold
cross validation; MLP gives an accuracy of 54%.

Table 10 shows the per class accuracy of this classifier. It can
be seen from the table that MLP is unable to classify the “fist”
class.

Table 10. Per class accuracy multi-layer perceptron.

Class Classification Accuracy with 75% training and 25% testing data Classification accuracy with 5 fold cross
validation

Thumb 53% 67%

Index Finger 64% 59%

Fist 0 37%

Index and Middle Finger 36% 51%

Comparison with other works
Ran et al. classified 10 pair of finger movements and achieved

an overall accuracy of 77%. If we compare pair accuracies
with that achieved by RanXiao, the thumb vs. index finger was
71.27% while this study achieved 71% accuracy for that class.
Our work is most closely related to RanXiao et al. research as
they are concentrating on classification of individual finger
movements.

The work of Vuckovic et al. basically proposed the usage of a
2-stage 4 class model for BCI systems and this study used their
idea of a 2-stage model and applied it on our classifier.

Mohamed et al. achieved an accuracy comparable to ours that
is 65% and 71% for two classifiers. However, they classified
between two classes (finger and wrist movement).

Lehtonen et al. achieved a higher accuracy of 80% and 86%
respectively. However, their chosen movements were of left
and right hand. These movements have a larger spatial
difference in motor cortex and hence, the classifier works
better. They used common spatial subspace for feature
extraction and support vector clustering as a classifier. Table 1
compares all the researches.

 The main contribution of our research is to be able to differ
between movements that can be used to control prosthesis.
Since this study is focusing on the right hand only, the
accuracy achieved between our four classes is higher than
expected and the proposed method can be used to control
prosthesis through EEG signals of the right hand finger
movements.

Conclusion
It has been shown that PSD and logistic regression model can
be used for classification of finger movements. A mean
accuracy of 65% has been achieved, which are significantly
improved results. This can be increased further if the
overlapping classes of fist, index and middle finger are
classified better and this is the suggested future work for this
project. Comparison with other classifiers shows that logistic
regression model performs best with the data set under
consideration. Comparing research with other work has also

shown that the accuracy achieved is greater than that was
expected by these movements.

In future, the model is to be implemented on an embedded
system, which will be then connected with prosthesis. This is
will create a working model. The embedded system will then
be modified to intake real-time data from the electrode headset.
At the moment, work is being done on development of the
embedded system of this model. The trained logistic regression
classifier of the current research will be used. The filter and
feature extractor will be developed in the embedded system.
The parameters of the filter and PSD model will remain the
same as the current research.

Once the system has been developed, it will be connected with
upper limb prosthesis. Initially this will be controlled using the
data that was collected for this study. The data will be sent to
the controller to first create an offline system on an embedded
system. In the next step of the study, the system can be made
online with collection of data from the subject at the time of
processing.

The research can be further refined by taking data from
multiple volunteers rather than one and re-training the
classifier according to that. This will result in a decrease in the
accuracy of the classifier due to the different potentials of
different humans. However, principal component analysis and
other techniques can be used to improve that. In conclusion,
the current research is a stepping stone for further research in
the proposed movements and provides a baseline for future
research.
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